2022年最有开创性的10篇AI论文总结

本文我们总结了在2022年发表的最具开创性的10篇论文,无论如何你都应该看看。

PyTorch 2.0 推理速度测试:与 TensorRT 、ONNX Runtime 进行对比

PyTorch 2.0 于 2022 年 12 月上旬在 NeurIPS 2022 上发布,它新增的 torch.compile 组件引起了广泛关注,因为该组件声称比 PyTorch 的先前版本带来更大的计算速度提升。

使用CLIP构建视频搜索引擎

使用CLIP构建视频搜索引擎

Pandas处理大数据的性能优化技巧

Pandas是Python中最著名的数据分析工具。本文将介绍一些使用Pandas处理大数据时的技巧,希望对你有所帮助

降维和特征选择的对比介绍

在machine learning中,特征降维和特征选择是两个常见的概念,在应用machine learning来解决问题的论文中经常会出现。特征降维和特征选择的目的都是使数据的维数降低,使数据维度降小。但实际上两者的区别是很大,他们的本质是完全不同的。

为深度学习选择最好的GPU

加快训练速度,更快的迭代模型

PyTorch的Dataset 和TorchData API的比较

从版本1.11开始,PyTorch引入了TorchData库,它实现了一种不同的加载数据集的方法。

如何检测时间序列中的异方差(Heteroskedasticity)

异方差性影响时间序列建模。因此检测和处理这种情况非常重要。

论文推荐:CCNet用于语义分割的交叉注意力

CCNet, Transformer递归交叉自注意力,比非局部神经网络更有效。华中科技大学、地平线、ReLER 和伊利诺伊大学香槟分校联合研发

15个节省时间的Jupyter技巧

Jupyter Notebooks使用非常简单并且对于任何面向python的任务都可以非常方便的使用。

变分自编码器VAE的数学原理

变分自编码器(VAE)是一种应用广泛的无监督学习方法,它的应用包括图像生成、表示学习和降维等。

基于CNN和LSTM的气象图降水预测示例

我们是否可以通过气象图来预测降水量呢?今天我们来使用CNN和LSTM进行一个有趣的实验。

Pandas中高效的选择和替换操作总结

在本文中,我们将重点介绍在DataFrame上经常执行的两个最常见的任务,有效地选择特定的和随机的行和列,以及使用replace()函数使用列表和字典替换一个或多个值。

计算机视觉面试中一些热门话题整理

通常在机器学习面试中,问完常见基础知识的技术问题之后会有具体的项目问题的讨论,所以这里准备了一些项目相关的话题,以可以帮助你准备和通过计算机视觉相关的面试。

强化学习的基础知识和6种基本算法解释

本文将涉及强化学习的术语和基本组成部分,以及不同类型的强化学习(无模型、基于模型、在线学习和离线学习)。本文最后用算法来说明不同类型的强化学习。

Python中的魔法方法

python中的魔法方法是一些可以让你对类添加“魔法”的特殊方法,它们经常是两个下划线包围来命名的

使用PyTorch进行知识蒸馏的代码示例

在本文中,我们将探索知识蒸馏的概念,以及如何在PyTorch中实现它。

从另外一个角度解释AUC

AUC到底代表什么呢,我们从另外一个角度解释AUC

时间序列的蒙特卡罗交叉验证

交叉验证应用于时间序列需要注意是要防止泄漏和获得可靠的性能估计本文将介绍蒙特卡洛交叉验证。这是一种流行的TimeSeriesSplits方法的替代方法。

基于Vision Transformers的文档理解简介

文档理解是从pdf、图像和Word文档中提取关键信息的技术。这篇文章的目标是提供一个文档理解模型的概述。

个人信息

加入时间:2020-01-23

最后活动:1 天前

发帖数:1208

回复数:1