GraphRAG 与 RAG 的比较分析
Graph RAG 技术通过引入图结构化的知识表示和处理方法,显著增强了传统 RAG 系统的能力。它不仅提高了信息检索的准确性和完整性,还为复杂查询和多步推理提供了更强大的支持。
让模型评估模型:构建双代理RAG评估系统的步骤解析
我们将介绍一个基于双代理的RAG(检索增强生成)评估系统。该系统使用生成代理和反馈代理,基于预定义的测试集对输出进行评估。或者更简单的说,我们使用一个模型来评估另外一个模型的输出。
机器学习模型中特征贡献度分析:预测贡献与错误贡献
本文将探讨特征重要性与特征有效性之间的关系,并引入两个关键概念:预测贡献度和错误贡献度。
CAS-ViT:用于高效移动应用的卷积加法自注意力视觉Transformer
这是8月份再arxiv上发布的新论文,我们下面一起来介绍这篇论文的重要贡献
概率分布深度解析:PMF、PDF和CDF的技术指南
本文将深入探讨概率分布,详细阐述概率质量函数(PMF)、概率密度函数(PDF)和累积分布函数(CDF)这些核心概念,并通过实际示例进行说明。
数据稀缺条件下的时间序列微分:符号回归(Symbolic Regression)方法介绍与Python示例
有多种方法可以处理时间序列数据中的噪声。本文将介绍一种在我们的研究项目中表现良好的方法,特别适用于时间序列概况中数据点较少的情况。
利用未标记数据的半监督学习在模型训练中的效果评估
本文将介绍三种适用于不同类型数据和任务的半监督学习方法。我们还将在一个实际数据集上评估这些方法的性能,并与仅使用标记数据的基准进行比较。
MemLong: 基于记忆增强检索的长文本LLM生成方法
本文将介绍MemLong,这是一种创新的长文本语言模型生成方法。MemLong通过整合外部检索器来增强模型处理长上下文的能力,从而显著提升了大型语言模型(LLM)在长文本处理任务中的表现。
KAN专家混合模型在高性能时间序列预测中的应用:RMoK模型架构探析与Python代码实验
本文将深入探讨RMoK模型的架构和内部机制,并通过Python实现一个小型实验来验证其性能。
使用ClassificationThresholdTuner进行二元和多类分类问题阈值调整,提高模型性能增强结果可解释性
本文将深入探讨阈值调整的具体机制 — 特别是在多类分类问题中,这个过程可能会比较复杂。我们还将介绍一个名为 ClassificationThresholdTuner 的开源工具,这是笔者开发的一个自动化阈值调整和解释的工具。
Monte Carlo方法解决强化学习问题
本文继续深入探讨蒙特卡罗 (MC)方法。这些方法的特点是能够仅从经验中学习,不需要任何环境模型,这与动态规划(DP)方法形成对比。
Transformer、RNN和SSM的相似性探究:揭示看似不相关的LLM架构之间的联系
通过探索看似不相关的大语言模型(LLM)架构之间的潜在联系,我们可能为促进不同模型间的思想交流和提高整体效率开辟新的途径。
时间序列结构变化分析:Python实现时间序列变化点检测
在时间序列分析和预测中,准确检测结构变化至关重要。
图特征工程实践指南:从节点中心性到全局拓扑的多尺度特征提取
本文将介绍如何利用NetworkX在不同层面(节点、边和整体图)提取重要的图特征。
Optuna发布 4.0 重大更新:多目标TPESampler自动化超参数优化速度提升显著
Optuna这个备受欢迎的超参数优化框架在近期发布了其第四个主要版本。
优化采样参数提升大语言模型响应质量:深入分析温度、top_p、top_k和min_p的随机解码策略
本文将详细解析并可视化定义LLM输出行为的采样策略。通过深入理解这些参数的作用机制并根据具体应用场景进行调优,可以显著提升LLM生成输出的质量。
使用PyTorch从零构建Llama 3
本文将详细指导如何从零开始构建完整的Llama 3模型架构,并在自定义数据集上执行训练和推理。
一文读懂蒙特卡洛算法:从概率模拟到机器学习模型优化的全方位解析
蒙特卡洛方法已成为机器学习领域的关键工具,在强化学习、贝叶斯滤波和复杂模型优化等方面有广泛应用
CNN中的注意力机制综合指南:从理论到Pytorch代码实现
本文将全面介绍CNN中的注意力机制,从基本概念到实际实现,为读者提供深入的理解和实践指导。