ImageNet1K的下载与使用

ImageNet不用多说,它包含了非常多的图片,总共有2w多个分类,但是显然太多。所以一般更常用的是ImageNet1K数据集,该数据集包含1000个类别。

【nn.LSTM详解】

nn.LSTM详解

Diffusion Models:生成扩散模型

扩散模型(Diffusion Models)发表以来其实并没有收到太多的关注,因为他不像 GAN 那样简单粗暴好理解。不过最近这几年正在生成模型领域异军突起,当前最先进的两个文本生成图像——OpenAI 的 DALL·E 2和 Google 的 Imagen,都是基于扩散模型来完成的。...

机器学习中的数学——距离定义(二):曼哈顿距离(Manhattan Distance)

曼哈顿距离是种使用在几何度量空间的几何学用语,用以标明两个点在标准坐标系上的绝对轴距总和。下图中红线代表曼哈顿距离,绿色代表欧氏距离,也就是直线距离,而蓝色和黄色代表等价的曼哈顿距离。曼哈顿距离在2维平面是两点在纵轴上的距离加上在横轴上的距离,即:d(x,y)=∣x1−y1∣+∣x2−y2∣d(x,

YOLO v5加入注意力机制、swin-head、解耦头部(回归源码)

YOLO v5 加入注意力机制、解耦头部和swin-head

CosineAnnealingLR(余弦退火调整学习率)

这是一种学习率的调整方式。

深度学习之bottleneck layer

一、bottleneck layery中文名称:瓶颈层。我初次接触也就是在残差网络中。一般在较深的网络中,如resnet101中使用。一般的结构如下:其中两个1X1fliter分别用于降低和升高特征维度,主要目的是为了减少参数的数量,从而减少计算量,且在降维之后可以更加有效、直观地进行数据的训练和特

linux下载/解压ImageNet-1k数据集

linux下载/解压ImageNet-1k数据集

GAN评价指标代码(FID、LPIPS、MS-SSIM)

GAN评价指标代码(FID、LPIPS、MS-SSIM写在前面FIDLPIPSMS-SSIM写在后面写在前面科研(毕业)需要,对GAN生成的图片要做定量评价,因此总结一些自己要用到的一些评价指标。FID官方链接:https://github.com/mseitzer/pytorch-fid步骤:(1

pytorch复现U-Net 及常见问题汇总(2021.11.14亲测可行)

目录2021.11.14复现过程:训练过程常见问题整理:之前简单地写了一个pytorch的U-net 复现过程,有很多小伙伴在评论里有很多疑问,抽空又复现了一遍,简单整理了常见的问题。之前写的教程:U-net复现pytorch版本 以及制作自己的数据集并训练_candice5566的博客-CSDN博

可变形卷积(DCN)

ICCV 2017的一篇文章。可变形卷积(DCN)的原理和实现

3D卷积神经网络详解

1 3d卷积的官方详解2 2D卷积与3D卷积1)2D卷积 2D卷积:卷积核在输入图像的二维空间进行滑窗操作。2D单通道卷积 对于2维卷积,一个3*3的卷积核,在单通道图像上进行卷积,得到输出的动图如下所示:2D多通道卷积 在之前的2D单通道的例子中,我们在一张图像上使用卷积核进行扫描,得

YOLOv3&YOLOv5输出结果说明

本文使用的yolov3和yolov5工程文件均为github上ultralytics基于pytorch的v3和v5代码,其训练集输出结果类型基本一致,主要介绍了其输出结果,本文是一篇学习笔记本文使用的yolov3代码github下载地址:yolov3模型训练具体步骤可查看此篇博客:yolov3模型训

Yolov7-pose 训练body+foot关键点

yolo-pose

在运行yolo5的v5.0版本detect.py时遇到的一些错误

跟着小土堆的视频教学自己遇到的一些问题。

简单粗暴提升yolov5小目标检测能力

和yolov5最开始做的focus是类似的,对于输入的特征图(长宽为S),从左到右以及从上到下每scale个像素采样一次,假设scale=2,采样方式就和上图一样,经过这样采样的输出长宽就是S/2,最后将采样后的输出进行concatenate,通道数就是scale的平方,即4。左侧是yolov5原始

将yolov5中的PANet层改为BiFPN

本文以YOLOv5-6.1版本1.修改common.py,在common.py后加入如下代码# 结合BiFPN 设置可学习参数 学习不同分支的权重# 两个分支add操作class BiFPN_Add2(nn.Module): def __init__(self, c1, c2):

Anaconda创建环境及环境配置

anaconda创建环境

【pytorch】ResNet18、ResNet20、ResNet34、ResNet50网络结构与实现

ResNet18、ResNet20、ResNet34、ResNet50网络结构与实现

复现开源论文代码总结

复现开源论文代码总结

登录可以使用的更多功能哦! 登录
作者榜
...
资讯小助手

资讯同步

...
内容小助手

文章同步

...
Deephub

公众号:deephub-imba

...
奕凯

公众号:奕凯的技术栈