计算机视觉项目-实时目标追踪

目标追踪技术对于民生、社会的发展以及国家军事能力的壮大都具有重要的意义。它不仅仅可以应用到体育赛事当中目标的捕捉,还可以应用到交通上,比如实时监测车辆是否超速等!对于国家的军事也具有一定的意义,比如说导弹识别目标等方向。所以说实时目标追踪技术对于整个社会来说都是非常重要的!目前被应用的比较多的,而且

使用机器学习创建自己的Emojis 表情

在本文中,我们将描述一种图像生成方法,该方法无需额外的模型训练和昂贵的设备就可以在不同的图像风格之间切换。

猿创征文|【深度学习前沿应用】文本生成

【自然语言处理(NLP)】文本生成,基于百度飞桨开发,参考于《机器学习实践》所作。

猿创征文|深度学习基于前馈神经网络完成鸢尾花分类

在梯度下降法中,目标函数是整个训练集上的风险函数,这种方式称为批量梯度下降法(Batch Gradient Descent,BGD)。 批量梯度下降法在每次迭代时需要计算每个样本上损失函数的梯度并求和。当训练集中的样本数量NN很大时,空间复杂度比较高,每次迭代的计算开销也很大。为了减少每次迭代的计算

GANs的优化函数与完整损失函数计算

本文详细解释了GAN优化函数中的最小最大博弈和总损失函数是如何得到的。将介绍原始GAN中优化函数的含义和推理,以及它与模型的总损失函数的区别,这对于理解Generative Adversarial Nets是非常重要的

Pytorch优化器全总结(一)SGD、ASGD、Rprop、Adagrad

这是一个系列,以Pytorch为例,介绍所有主流的优化器,如果都搞明白了,对优化器算法的掌握也就差不多了。作为系列的第一篇文章,本文介绍Pytorch中的SGD、ASGD、Rprop、Adagrad,其中主要介绍SGD和Adagrad。因为这四个优化器出现的比较早,都存在一些硬伤,而作为现在主流优化

MobileViT模型简介

自从2010年ViT(Vision Transformer)模型的横空出世,人们发现了Transformer架构在视觉领域的巨大潜力。近些年,越来越多的科研人员投入Transformer的怀抱,视觉领域的各项任务也不断被Transformer架构模型刷新。Transformer虽然强大,但在现在看来

Checkerboard Artifacts(棋盘伪影)的发生以及解决方案:

kernel_size=3,stride=2:以输出中第三行元素为例,从左往右接受的信息量依次由输入中的2/2/4/2/2个元素提供,中间元素接受信息量不同,此为“不均匀重叠”。此外,当kernel_size=3,stride=2时,一维转置卷积输出中依次接受输入特征的1/1/2/1/1个元素提供的

python从入门到实践:项目1-ATM取款机(完成代码)

通过上图,我们可以看到,一个完整的项目,基本包括三个部分:用户视图层、接口层、数据处理层,其中,用户视图层是用来接收用户的数据输入的,比如:有户名,密码;接口层是要接收用户视图层传来的数据,然后做判断:名字是否存在、密码是否正确,这就要求接口层调用数据处理层的方法;数据处理层就需要接收接口层的参数,

猿创征文|深度学习基于ResNet18网络完成图像分类

CIFAR-10数据集包含了10种不同的类别、共60,000张图像,其中每个类别的图像都是6000张,图像大小均为32×3232×32像素。

【深度学习前沿应用】目标检测

【自然语言处理(NLP)】目标检测,基于百度飞桨开发,参考于《机器学习实践》所作。

365天深度学习 | 第7周:咖啡豆识别

关于卷积的相关知识可以参考文章:https://mtyjkh.blog.csdn.net/article/details/114278995。我们可以通过class_names输出数据集的标签。2)需要的存储容量大,不利于部署。在官方模型与自建模型之间进行二选一就可以了,选着一个注释掉另外一个。VG

【深度学习】7-矩阵乘法运算的反向传播求梯度

本节以较简单的例子来理解矩阵乘法下的反向传播过程。为了稍微形象一些,这里同样会用到计算图来进行描述。

手把手教你深度学习和实战-----卷积神经网络

利用大量的图片来讲解卷积神经网络的原理

BERT模型解析

BERT模型的提出对于NLP预训练的效果有了较大提升,在ELMo模型的基础上使用了Self-Attention作为文本特征的挖掘,同时避免了GPT模型中的单向语言模型,充分利用文本中的上下文特征。

Stable Diffusion搭建全过程记录,生成自己的专属艺术照

项目开发领导者有两位,分别是 AI 视频剪辑技术创业公司 Runway 的 Patrick Esser,和慕尼黑大学机器视觉学习组的 Robin Romabach。这个项目的技术基础主要来自于这两位开发者之前在计算机视觉大会 CVPR22 上合作发表的潜伏扩散模型 (Latent Diffusion

Python&OpenCV自动人脸打马赛克&调色系统[源码&UI操作界面&部署教程]

Al视频教程AI人脸打马赛克Al颜色检索替换图像处理人脸识别UI界面OpenCV PYTHON教程

CS231n-2022 Module1: Minimal Neural Network case study

本文编译自斯坦福大学的CS231n课程(2022) Module1课程中神经网络部分之一,原课件网页参见:本文(本系列)不是对原始课件网页内容的完全忠实翻译,只是作为学习笔记的摘要,主要是自我参考,而且也可能夹带一些私货(自己的理解和延申,不保证准确性)。如果想要更准确地了解更具体的细节,还请服用原

登录可以使用的更多功能哦! 登录
作者榜
...
资讯小助手

资讯同步

...
内容小助手

文章同步

...
Deephub

公众号:deephub-imba

...
奕凯

公众号:奕凯的技术栈