【Attention机制】YOLOX模型改进之(SE模块、ECA模块、CBAM模块)的添加

YOLOX模型改进论文地址:https://arxiv.org/pdf/1709.01507.pdf官方代码地址:https://github.com/hujie-frank/SENetPytorch代码地址:https://github.com/moskomule/senet.pytorchSE模

【pytorch】Vision Transformer实现图像分类+可视化+训练数据保存

一、Vision Transformer介绍Transformer的核心是 “自注意力” 机制。论文地址:https://arxiv.org/pdf/2010.11929.pdf自注意力(self-attention)相比 卷积神经网络 和 循环神经网络 同时具有并行计算和最短的最大路径⻓度这两个优

常用归一化/正则化层:InstanceNorm1d、InstanceNorm2d、

批量归一化与实例归一化的最大区别在于计算均值及方差的依据不同,实例归一化是对每个样本沿着通道方向独立对各个通道进行计算,而批量归一化则是对所有样本沿着batch的方向对各个通道分别进行计算。比如:输入特征图形状为:(2,3,256,512),表示有两个256×512的特征图,特征图通道数为3,假设为

4、nerf(pytorch)

nerf-pytorch

AI艺术的背后:详解文本生成图像模型【基于 Diffusion Model】

GLIDE 使用了文本作为条件,来实现文本引导的扩散模型,在文本引导上面,文中主要使用了两种策略,Classifier-Free Diffusion Guidence 以及 CLIP 来作为条件监督,同时使用了更大的模型,在数据量上,和DALL-E 相似。实际上,扩散模型做的事情本质上是一样的,不同

DETR源码笔记(一)

源码获取:https://gitee.com/fgy120/DETR首先对DETR做个简单介绍上图即为DETR的流程pipeline,相比以前的RCNN系列、YOLO系列等,最特别的在于加入了Transformer。直接看源码,从train.py的main函数开始。if __name__ == '_

MaxPool2d详解--在数组和图像中的应用

选择卷积核覆盖时的最大值,ceil_mode控制卷积核超出原始数据后是否进行保留函数:参数要求代码:结果:代码:结果:代码:结果:

[总结] 半监督学习方法: 一致性正则化(Consistency Regularization)

基于平滑假设和聚类假设, 具有不同标签的数据点在低密度区域分离, 并且相似的数据点具有相似的输出. 那么, 如果对一个未标记的数据应用实际的扰动, 其预测结果不应该发生显著变化, 也就是输出具有一致性.

12大类150个图像处理和深度学习开源数据集

本文整理了150 个深度学习和图像处理领域的开源数据集,包括:目标检测、人脸识别、文本识别、图像分类、缺陷检测、医学影像、图像分割、图像去雾、关键点检测、动作识别、姿态估计、自动驾驶和 RGBT 等12个方向。

WGAN(Wasserstein GAN)看这一篇就够啦,WGAN论文解读

WGAN本作引入了Wasserstein距离,由于它相对KL散度与JS 散度具有优越的平滑特性,理论上可以解决梯度消失问题。接 着通过数学变换将Wasserstein距离写成可求解的形式,利用 一个参数数值范围受限的判别器神经网络来较大化这个形式, 就可以近似Wasserstein距离。WGAN既解

rk3588使用npu进行模型转换和推理,加速AI应用落地

本来想使用tensorrt进行加速推理,但是前提需要cuda,rk的板子上都是Arm的手机gpu,没有Nvidia的cuda,所以这条路行不通。使用该NPU需要下载RKNN SDK,RKNN SDK 为带有 NPU 的RK3588S/RK3588 芯片平台提供编程接口,能够帮助用户部署使用 RKNN

神经网络算法基本原理及其实现

目录背景知识人工神经元模型激活函数网络结构工作状态学习方式BP算法原理算法实现(MATLAB)背景知识在我们人体内的神经元的基本结构,相信大家并不陌生,看完下面这张图,相信大家都能懂什么是人工神经网络?人工神经网络是具有适应性的简单神经元组成的广泛并互连的网络,它的组织能够模拟生物神经系统对真实世界

深度学习 简介

在介绍深度学习之前,我们先看下人工智能,机器学习和深度学习之间的关系:机器学习是实现人工智能的一种途径,深度学习是机器学习的一个子集,也就是说深度学习是实现机器学习的一种方法。与机器学习算法的主要区别如下图所示:传统机器学习算术依赖人工设计特征,并进行特征提取,而深度学习方法不需要人工,而是依赖算法

MAE详解

目录一、介绍二、网络结构1. encoder2. decoder3. LOSS三、实验全文参考:论文阅读笔记:Masked Autoencoders Are Scalable Vision Learners_塔_Tass的博客-CSDN博客masked autoencoders(MAE)是hekai

(Note)优化器Adam的学习率设置

从统计的角度看,Adam的自适应原理也是根据统计对梯度进行修正,但依然离不开前面设置的学习率。如果学习率设置的过大,则会导致模型发散,造成收敛较慢或陷入局部最小值点,因为过大的学习率会在优化过程中跳过最优解或次优解。同时神经网络的损失函数基本不是凸函数,而梯度下降法这些优化方法主要针对的是凸函数,所

深度强化学习-TD3算法原理与代码

引言Twin Delayed Deep Deterministic policy gradient (TD3)是由Scott Fujimoto等人在Deep Deterministic Policy Gradient (DDPG)算法上改进得到的一种用于解决连续控制问题的在线(on-line)异策(

语义分割系列7-Attention Unet(pytorch实现)

本文介绍了AttentionUnet模型和其主要中心思想,并在pytorch框架上构建了Attention Unet模型,构建了Attention gate模块,在数据集Camvid上进行复现。

关于 FLOPS、FLOPs、参数量的相关计算

最近找到一些计算FLOPs的文章,奈何全是水文,讲都讲不清楚,完完全全的究极缝合怪。因此,这里准备彻底搞懂。

YOLOv5-v6.0学习笔记

YOLOv5-6.0版本的Backbone主要分为Conv模块、CSPDarkNet53和SPPF模块。YOLOv5在Conv模块中封装了三个功能:包括卷积(Conv2d)、Batch Normalization和激活函数,同时使用autopad(k, p)实现了padding的效果。其中YOLOv

labelImg 使用以及安装教程---图像标注工具

目录 labelImg 使用教程LabelImg简介LabelImg用法步骤 (PascalVOC)步骤 (YOLO)创建预定义的类注释可视化热键验证图片设置困难识别对象如何重置设置实际操作相关和附加工具labelImg安装在gitbash的安装从源代码构建使用 Docker拓展roLabelImg

登录可以使用的更多功能哦! 登录
作者榜
...
资讯小助手

资讯同步

...
内容小助手

文章同步

...
Deephub

公众号:deephub-imba

...
奕凯

公众号:奕凯的技术栈