手把手调参最新 YOLOv7 模型 训练部分 - 最新版本(二)
YOLO科研Trick改进推荐 | 包括Backbone、Neck、Head、注意力机制、IoU损失函数、NMS、Loss计算方式、自注意力机制、数据增强部分、激活函数
计算机与自动化顶会(A类)2023截稿时间及会议时间(持续更新)
计算机顶会2023截稿时间及会议时间(持续更新)
ECA 注意力模块 原理分析与代码实现
本文介绍ECA注意力模块,它是在ECA-Net中提出的,ECA-Net是2020 CVPR中的论文;ECA模块可以被用于CV模型中,能提取模型精度,所以给大家介绍一下它的原理,设计思路,代码实现,如何应用在模型中。它是一种通道注意力模块。
yolov5ds-断点训练、继续训练、先终止训练并调整最终epoch(yolov5同样适用)
训练完原有epoch后,但还继续训练,比如设置epoch为200,已经训练完了,但是没有收敛等原因想使用训练了200epoch的权重继续训练100个epoch,总共就是300个epoch。断电、或者什么原因中断了,比如设定epoch为200,但是在90这里中断了,想从断点这里。这两处修改是为了断点训
【文章阅读】Frustratingly Simple Few-Shot Object Detection
从几个例子中检测稀有物体是一个新出现的问题。先前的研究表明,元学习是一种很有前途的方法。但是,微调技术几乎没有引起人们的注意。我们发现,仅对稀有类现有检测器的最后一层进行微调对于少镜头目标检测任务是至关重要的。在当前的基准测试中,这种简单的方法比元学习方法高出大约2~20个百分点,有时甚至会使以前的
改进YOLOv5 | 头部解耦 | 将YOLOX解耦头添加到YOLOv5 | 涨点杀器
在目标检测中,分类任务和回归任务之间的冲突是一个众所周知的问题。因此...
使用YOLOv5实现人脸口罩佩戴检测(详细)
获取人脸口罩的数据集有两种方式:第一种就是使用网络上现有的数据集labelImg 使用教程 图像标定工具注意!
基于yolov5的目标检测和单目测距
快速入门基于yolov5的目标检测和单目测距
【PyTorch深度学习项目实战100例目录】项目详解 + 数据集 + 完整源码
大家好,我是阿光。本专栏整理了《深度学习100例》,内包含了各种不同的深度学习项目,包含项目原理以及源码,每一个项目实例都附带有完整的代码+数据集。正在更新中~ ✨。
视觉 注意力机制——通道注意力、空间注意力、自注意力
本文介绍注意力机制的概念和基本原理,并站在计算机视觉CV角度,进一步介绍通道注意力、空间注意力、混合注意力、自注意力等。
目标检测算法——YOLOv5改进|增加小目标检测层
1.YOLOv5算法简介YOLOv5主要由输入端、Backone、Neck以及Prediction四部分组成。其中:(1) Backbone:在不同图像细粒度上聚合并形成图像特征的卷积神经网络。(2) Neck:一系列混合和组合图像特征的网络层,并将图像特征传递到预测层。(3) Head: 对图像特
【语义分割】1、语义分割超详细介绍
图像分割是机器视觉任务的一个重要基础任务,在图像分析、自动驾驶、视频监控等方面都有很重要的作用。图像分割可以被看出一个分类任务,需要给每个像素进行分类,所以就比图像分类任务更加复杂。此处主要介绍 DL-based 方法。encoder:输入图像→resize到特定大小→输入 backbone→得到特
BraTS2021脑肿瘤分割实战
脑肿瘤分割是MICCAI所有比赛中历史最悠久的,到2021年已经连续举办了10年,参赛人数众多,是学习医学图像分割最前沿的平台之一。简介: 胶质母细胞瘤和具有胶质母细胞瘤分子特征的弥漫性星形细胞胶质瘤(WHO 4 级星形细胞瘤)是成人中枢神经系统最常见和最具侵袭性的恶性原发性肿瘤,在外观、形状和组
2022年11月10篇论文推荐
介绍10篇推荐的论文。这里将涵盖强化学习(RL)、扩散模型、自动驾驶、语言模型等主题。
【NovelAI】在QQ群中部署AI画图机器人
基于NovelAI算法的QQ群AI画图机器人的实现
利用yolov5实现口罩佩戴检测算法(非常详细)
帮助你快速掌握利用yolov5来训练口罩佩戴检测模型。
YOLOv7(目标检测)入门教程详解---检测,推理,训练
零基础入门yolov7,从环境配置到检测,推理,训练,再到c++预测
Multi-Modal Knowledge Graph(多模态知识图谱)
本篇博文梳理一篇knowledge-based方向的文章,结合了多模态知识的多模态知识图谱。来自复旦大学。知识图谱本质上是一个以实体、概念为节点、以概念之间的各种语义关系为边的大规模语义网络。知识图谱在现实生活中广泛应用,包括文本理解、推荐系.
读懂联邦学习中的安全与隐私问题(全)
该篇是2021年发表在《Future Generation Computer Systems》期刊上的一篇综述论文,主要介绍了联邦学习中可能面对的所有安全与隐私威胁问题,比较详细和具体的进行了综述,是篇还不错的文章,建议读原文。以下是个人的读书笔记,结合自己的理解,只截取部分关键或重要的部分。先附上