detectron2安装详细教程+demo测试
win10 下 detectron2 安装详细教程,手把手教你配置!!
从头开始进行CUDA编程:流和事件
为了提高我们的并行处理能力,本文介绍CUDA事件和如何使用它们
YOLOv5 Head解耦
【代码】YOLOv5 Head解耦。
CNN中的底层、高层特征、上下文信息、多尺度
分类要求特征有较多的高级信息,回归(定位)要求特征包含更多的细节信息。
YOLOv5中的SPP/SPPF结构详解
深度学习入门小菜鸟,希望像做笔记记录自己学的东西,也希望能帮助到同样入门的人,更希望大佬们帮忙纠错啦~侵权立删。目录一、SPP的应用的背景二、SPP结构分析三、YOLOv5中SPP结构源码解析(内含注释分析)一、SPP的应用的背景在卷积神经网络中我们经常看到固定输入的设计,但是如果我们输入的不能是固
2022年顶会、顶刊SNN相关论文----------持续更新中
2022年顶会、顶刊脉冲神经网络相关优秀论文收集
BERT详解:概念、原理与应用
对bert的原理,结构,预训练过程进行介绍
图像处理中常见的几种插值方法:最近邻插值、双线性插值、双三次插值(附Pytorch测试代码)
在学习可变形卷积时,因为学习到的位移量Δpn可能是小数,因此作者采用双线性插值算法确定卷积操作最终采样的位置。通过插值算法我们可以根据现有已知的数据估计未知位置的数据,并且可以利用这种方法对图像进行缩放、旋转以及几何校正等任务。此处我通过这篇文章学习总结常见的三种插值方法,包括最近邻插值、双线性插值
yolov7训练自己的数据集及报错处理
yolov7训练自己的数据集及报错处理,其实和yolov5差不太多
Pytorch实战100例-第6天:好莱坞明星识别
本文为内部限免文章,参考本文所写记录性文章,请在文章开头注明以下内容,复制粘贴即可。
【Python】CUDA11.6安装PyTorch三件套
安装PyTorch
【毕业设计】深度学习人脸表情识别系统 - python
🔥 Hi,大家好,这里是丹成学长的毕设系列文章!🔥 对毕设有任何疑问都可以问学长哦!这两年开始,各个学校对毕设的要求越来越高,难度也越来越大… 毕业设计耗费时间,耗费精力,甚至有些题目即使是专业的老师或者硕士生也需要很长时间,所以一旦发现问题,一定要提前准备,避免到后面措手不及,草草了事。为了
改进YOLOv5系列:9.BoTNet Transformer结构的修改
目标检测小白科研Trick改进推荐 | 包括Backbone、Neck、Head、注意力机制、IoU损失函数、NMS、Loss计算方式、自注意力机制、数据增强部分、激活函数
一文通俗入门·脉冲神经网络(SNN)·第三代神经网络
一文通俗入门脉冲神经网络(snn)动力学方程,前向传播过程,学习算法,脉冲编码方式
【ResNet】Pytorch从零构建ResNet18
Pytorch从零构建ResNet18ResNet 目前是应用很广的网络基础框架,所以有必要了解一下.本文从简单的ResNet18开始,详细分析了ResNet18的网络结构,并研究BasicBlock的结构。,使得整个结构非常清晰,再之后手工构建ResNet18网络就没有那么困难了。
NeurIPS2022 | SegNeXt,重新思考卷积注意力设计
在本文中,作者分析了以前成功的分割模型,并找到了它们所拥有的良好特征。基于这些发现,作者提出了一个定制的卷积注意力模块 MSCA 和一个 CNN 风格的网络 SegNeXt。实验结果表明,SegNeXt 在相当大的程度上超越了当前最先进的基于Transformer的方法。最近,基于Transform
Yolov5添加注意力机制
1、先把注意力结构代码放到common.py文件中,以SE举例,将这段代码粘贴到common.py文件中2、找到yolo.py文件里的parse_model函数,将类名加入进去3、修改配置文件(我这里拿yolov5s.yaml举例子),将注意力层加到你想加入的位置;常用的一般是添加到backbone
几种常见的归一化方法
关于归一化的一些理解!!
【YOLO系列】YOLOv5、YOLOX、YOOv6、YOLOv7网络模型结构
YOLOv5、YOLOX、YOLOv6、YOLOv7模型结构图
深度学习常见名词概念:Sota、Benchmark、Baseline、端到端模型、迁移学习等的定义
深度学习:Sota的定义sota实际上就是State of the arts 的缩写,指的是在某一个领域做的Performance最好的model,一般就是指在一些benchmark的数据集上跑分非常高的那些模型。