特征选择:11 种特征选择策略总结

“特征选择”意味着可以保留一些特征并放弃其他一些特征。本文的目的是概述一些特征选择策略

使用分布外数据去除不需要的特征贡献,提高模型的稳健性

分布外数据增强训练可以提高 DNN 的准确性和效率,通过抗性训练可以让 DNN 更加健壮,让模型更不容易受到扰动的影响。

特征工程:基于梯度提升的模型的特征编码效果测试

树形结构为什么不需要归一化?使用独热编码和标签编码对模型的表现影响大吗?

Python-sklearn之PCA主成分分析

文章目录写在前面一、PCA主成分分析1、主成分分析步骤2、主成分分析的主要作二、Python使用PCA主成分分析写在前面作为大数据开发人员,我们经常会收到一些数据分析工程师给我们的指标,我们基于这些指标进行数据提取。其中数据分析工程师最主要的一个特征提取方式就是PCA主成分分析,下面我将介绍Pyth

深度特征合成与遗传特征生成,两种自动特征生成策略的比较

特征工程是从现有特征创建新特征的过程,本文中将通过一个示例比较两种自动特征生成的方法:DFS和GFG

特征工程:常用的特征转换方法总结

在数据集中,大多数时候都会有不同大小的数据。为了使更好的预测,必须将不同的特征缩小到相同的幅度范围或某些特定的数据分布。

使用时间特征使让机器学习模型更好地工作

在本文中,我将通过一个实际示例讨论如何从 DateTime 变量中提取新特征以提高机器学习模型的准确性。

特殊图像的色彩特征工程:非自然图像的颜色编码

在本文中,我们将探讨特征工程的不同方式(将原始颜色值进行展开)如何有助于提高卷积神经网络的分类性能。

登录可以使用的更多功能哦! 登录
作者榜
...
资讯小助手

资讯同步

...
内容小助手

文章同步

...
Deephub

公众号:deephub-imba

...
奕凯

公众号:奕凯的技术栈