硬核,这年头机器人都开始自学“倒车入库”了
本文基于差速轮式机器人模型做一个运动学应用,即控制机器人两轮的速度差改变其运动轨迹,使机器人完成一个倒车入库的动作,提供仿真代码和实车演示!
Numpy科学计算库基础知识(Hello,world)
一、前言本人2020级本科生,坐标北京师范大学,主修人工智能,辅修教育学。在期末周来临之前萌在CSDN上发文章的想法,这样做的理由有两点,一方面可以在学习的同时归纳总结加深记忆,便于自己今后复习回顾;另一方面可以在CSDN这样的技术交流平台上留下自己的痕迹,记录AI人求学路上点滴的成长碎片。
目标检测进阶:使用深度学习和 OpenCV 进行目标检测
使用深度学习和 OpenCV 进行目标检测基于深度学习的对象检测时,您可能会遇到三种主要的对象检测方法:Faster R-CNNs (Ren et al., 2015)You Only Look Once (YOLO) (Redmon et al., 2015)Single Shot Detecto
初识Pytorch使用transforms
首先,这次讲解的tansforms功能,通俗地讲,类似于在计算机视觉流程里的图像预处理部分的数据增强。transforms的原理:说明:图片(输入)通过工具得到结果(输出),这个工具,就是transforms模板工具,(tool=transforms.ToTensor()具体工具),使用工具resu
JavaCV的摄像头实战之十二:性别检测
实现性别检测并在预览窗口实时展现
5分钟 NLP:使用 OpenNRE 进行关系提取
关系提取、知识图谱、实体和 OpenNRE
5个很少被提到但能提高NLP工作效率的Python库
本篇文章将分享5个很棒但是却不被常被提及的Python库,这些库可以帮你解决各种自然语言处理(NLP)工作。
【论文笔记】OPTIPROMPT:用prompt提取预训练模型中的客观事实
目录引言论文介绍1. Continuous prompt2. Prompt是否真的有用思考总结引言像BERT这样的预训练模型学习了大规模语料的词分布,同时也学习了语料中的客观事实。基于这样的直觉,Petroni et al. (2019)提出LAMA模型,首次从BERT中以完形填空的方式提取客观事实
【参赛作品93】openGauss-An Autonomous Database【PVLDB论文阅读分享】
本文基于openGauss在VLDB2021上最新发表的论文《openGauss: An Autonomous Database System》,从学术的角度来探究openGauss如何基于各种AI技术构建一个智能的自治数据库系统。论文作者是清华大学李国良教授,他同时也是openGauss的总架构师
恒源云_文本数据扩增时,哪些单词 (不) 应该被选择?
文章来源 | 恒源云社区(恒源云,专注 AI 行业的共享算力平台)原文地址 | 论文笔记原文作者 | Mathor我在,或者我不在,大佬就在那里,持续不断的发文!所以,我还是老老实实的搬运吧!正文开始:文本扩增(Text Augmentation)现在大部分人都在用,因为它可以帮助提升文本分类的效果
pytorch基础复习1.1——常用API
【写在前面】:此专栏为本人在系统复习pytorch基础时写下的笔记,复习内容与进度参考一位在B站讲深度学习的up主(deep_thoughts),此笔记旨在帮助小伙伴快速入门和复习pytorch相关知识,写得不好的地方多担待,可直接移步up主的视频学习。此专栏全程无盈利性质。up主(deep_tho
使用yolov5训练自己的数据集(苹果成熟度检测)
先从Github上下载YOLOv5,下载好解压配置好就可以使用,地址:https://github.com/ultralytics/yolov51.训练数据集的准备工作在yolov5 目录的data文件夹下新建四个文件夹,先说明这四个文件夹分别是用来干什么的,后面会往里面一一加入需要添加的内容。An
深度学习与神经网络——邱锡鹏
一、绪论人工智能的一个子领域神经网络:一种以(人工))神经元为基本单元的模型深度学习:一类机器学习问题,主要解决贡献度分配问题知识结构:路线图:顶会:1.1 人工智能诞生:人工智能这个学科的诞生有着明确的标志性事件,就是1956年的达特茅斯(Dartmouth)会议。在这次会议上,“人工智能” 被提
OpenCV-Python实战(18)——深度学习简介与入门示例(快来一起推开深度学习的大门吧)
深度学习已经成为机器学习中最受欢迎和发展最快的领域。自 2012 年深度学习性能超越机器学习等传统方法以来,深度学习架构开始快速应用于包括计算机视觉在内的众多领域。深度学习的常见应用包括语音识别、图像识别、自然语言处理、推荐系统等等。在本文中,首先介绍传统机器学习方法与深度学习间的差异,然后将介绍图
九大遥感目标检测数据集(附下载链接)
本文梳理了目标监测领域的九大遥感图像数据集,包括粗粒度和细粒度数据集,对各数据集的具体指标及标注格式给出了解释。
从零实现深度学习框架——实现Tensor的反向传播
在常见运算的计算图中,我们了解了加减乘除等运算的计算图。本文通过代码实现加法和乘法的计算图来了解我们的`Tensor`自动反向传播计算梯度的模式。
linux服务器配置深度学习环境
自己服务器账号安装环境的顺序:创新环境、新环境安装cuda、安装新环境cuda匹配的pytorch用anaconda 可以cudatoolkit和pytorch一起装,可以设置清华镜像cuda自己装的cuda跟系统cuda没关系,跟base环境下也没关系。自己可以用系统的cuda。自己环境的cuda
2021 年顶级深度学习论文推荐
2021年还有10天就过去了, 以下是我认为 2021 年最有趣、最有前途的深度学习论文。
阅读和实现深度学习的论文初学者指南
如果想了解黑匣子内部发生了么,提高创造力或成为第一个将最新科学研究带入业务的开发人员 这篇文章应该可以帮到你。
可解释的AI (XAI):如何使用LIME 和 SHAP更好地解释模型的预测
在本文中,我将介绍两个可以帮助了解模型的决策过程的模型 LIME 和 SHAP。将可解释性集成到机器学习模型中可以帮助决策者和其他利益相关者有更多的可见性并可以让他们理解模型输出决策的解释。