rk3588使用npu进行模型转换和推理,加速AI应用落地
本来想使用tensorrt进行加速推理,但是前提需要cuda,rk的板子上都是Arm的手机gpu,没有Nvidia的cuda,所以这条路行不通。使用该NPU需要下载RKNN SDK,RKNN SDK 为带有 NPU 的RK3588S/RK3588 芯片平台提供编程接口,能够帮助用户部署使用 RKNN
神经网络算法基本原理及其实现
目录背景知识人工神经元模型激活函数网络结构工作状态学习方式BP算法原理算法实现(MATLAB)背景知识在我们人体内的神经元的基本结构,相信大家并不陌生,看完下面这张图,相信大家都能懂什么是人工神经网络?人工神经网络是具有适应性的简单神经元组成的广泛并互连的网络,它的组织能够模拟生物神经系统对真实世界
深度学习 简介
在介绍深度学习之前,我们先看下人工智能,机器学习和深度学习之间的关系:机器学习是实现人工智能的一种途径,深度学习是机器学习的一个子集,也就是说深度学习是实现机器学习的一种方法。与机器学习算法的主要区别如下图所示:传统机器学习算术依赖人工设计特征,并进行特征提取,而深度学习方法不需要人工,而是依赖算法
MAE详解
目录一、介绍二、网络结构1. encoder2. decoder3. LOSS三、实验全文参考:论文阅读笔记:Masked Autoencoders Are Scalable Vision Learners_塔_Tass的博客-CSDN博客masked autoencoders(MAE)是hekai
(Note)优化器Adam的学习率设置
从统计的角度看,Adam的自适应原理也是根据统计对梯度进行修正,但依然离不开前面设置的学习率。如果学习率设置的过大,则会导致模型发散,造成收敛较慢或陷入局部最小值点,因为过大的学习率会在优化过程中跳过最优解或次优解。同时神经网络的损失函数基本不是凸函数,而梯度下降法这些优化方法主要针对的是凸函数,所
深度强化学习-TD3算法原理与代码
引言Twin Delayed Deep Deterministic policy gradient (TD3)是由Scott Fujimoto等人在Deep Deterministic Policy Gradient (DDPG)算法上改进得到的一种用于解决连续控制问题的在线(on-line)异策(
语义分割系列7-Attention Unet(pytorch实现)
本文介绍了AttentionUnet模型和其主要中心思想,并在pytorch框架上构建了Attention Unet模型,构建了Attention gate模块,在数据集Camvid上进行复现。
关于 FLOPS、FLOPs、参数量的相关计算
最近找到一些计算FLOPs的文章,奈何全是水文,讲都讲不清楚,完完全全的究极缝合怪。因此,这里准备彻底搞懂。
YOLOv5-v6.0学习笔记
YOLOv5-6.0版本的Backbone主要分为Conv模块、CSPDarkNet53和SPPF模块。YOLOv5在Conv模块中封装了三个功能:包括卷积(Conv2d)、Batch Normalization和激活函数,同时使用autopad(k, p)实现了padding的效果。其中YOLOv
labelImg 使用以及安装教程---图像标注工具
目录 labelImg 使用教程LabelImg简介LabelImg用法步骤 (PascalVOC)步骤 (YOLO)创建预定义的类注释可视化热键验证图片设置困难识别对象如何重置设置实际操作相关和附加工具labelImg安装在gitbash的安装从源代码构建使用 Docker拓展roLabelImg
ImageNet1K的下载与使用
ImageNet不用多说,它包含了非常多的图片,总共有2w多个分类,但是显然太多。所以一般更常用的是ImageNet1K数据集,该数据集包含1000个类别。
【nn.LSTM详解】
nn.LSTM详解
Diffusion Models:生成扩散模型
扩散模型(Diffusion Models)发表以来其实并没有收到太多的关注,因为他不像 GAN 那样简单粗暴好理解。不过最近这几年正在生成模型领域异军突起,当前最先进的两个文本生成图像——OpenAI 的 DALL·E 2和 Google 的 Imagen,都是基于扩散模型来完成的。...
机器学习中的数学——距离定义(二):曼哈顿距离(Manhattan Distance)
曼哈顿距离是种使用在几何度量空间的几何学用语,用以标明两个点在标准坐标系上的绝对轴距总和。下图中红线代表曼哈顿距离,绿色代表欧氏距离,也就是直线距离,而蓝色和黄色代表等价的曼哈顿距离。曼哈顿距离在2维平面是两点在纵轴上的距离加上在横轴上的距离,即:d(x,y)=∣x1−y1∣+∣x2−y2∣d(x,
YOLO v5加入注意力机制、swin-head、解耦头部(回归源码)
YOLO v5 加入注意力机制、解耦头部和swin-head
CosineAnnealingLR(余弦退火调整学习率)
这是一种学习率的调整方式。
深度学习之bottleneck layer
一、bottleneck layery中文名称:瓶颈层。我初次接触也就是在残差网络中。一般在较深的网络中,如resnet101中使用。一般的结构如下:其中两个1X1fliter分别用于降低和升高特征维度,主要目的是为了减少参数的数量,从而减少计算量,且在降维之后可以更加有效、直观地进行数据的训练和特
linux下载/解压ImageNet-1k数据集
linux下载/解压ImageNet-1k数据集
GAN评价指标代码(FID、LPIPS、MS-SSIM)
GAN评价指标代码(FID、LPIPS、MS-SSIM写在前面FIDLPIPSMS-SSIM写在后面写在前面科研(毕业)需要,对GAN生成的图片要做定量评价,因此总结一些自己要用到的一些评价指标。FID官方链接:https://github.com/mseitzer/pytorch-fid步骤:(1
pytorch复现U-Net 及常见问题汇总(2021.11.14亲测可行)
目录2021.11.14复现过程:训练过程常见问题整理:之前简单地写了一个pytorch的U-net 复现过程,有很多小伙伴在评论里有很多疑问,抽空又复现了一遍,简单整理了常见的问题。之前写的教程:U-net复现pytorch版本 以及制作自己的数据集并训练_candice5566的博客-CSDN博