【视觉SLAM14讲】【汇总】

第一讲东西少,就没记录【slam十四讲第二版】【课本例题代码向】【第二讲初识SLAM】【SLAM基础知识】【linux下C++编译】【cmake基础使用】【slam十四讲第二版】【课本例题代码向】【第三~四讲刚体运动、李群和李代数】【eigen3.3.4和pangolin安装,Sophus及fim的

【图像分类数据集】非常全面实用的垃圾分类图片数据集共享

数据集获取不易,听闻国外开源精神非常盛行,那么我开个数据集不过分吧?整体数据集质量非常的不错,放眼全网这么好的数据集恐怕并不多见。

openCV第三篇

openCV第三篇

SwinIR实战:详细记录SwinIR的训练过程

SwinIR实战:详细记录SwinIR的训练过程。论文地址:https://arxiv.org/pdf/2108.10257.pdf预训练模型下载:https://github.com/JingyunLiang/SwinIR/releases训练代码下载:https://github.com/csz

【深度学习】(四)目标检测——上篇

上一章介绍了图像分类,这一章来学习一下目标检测上篇。简单来说,需要得到图像中感兴趣目标的类别信息和位置信息,相比于分类问题,难度有所提升,对图像的描述更加具体。在计算机视觉众多的技术领域中,目标检测(Object Detection)也是一项非常基础的任务,图像分割、物体追踪、关键点检测等通常都要依

目标检测--边框回归损失函数SIoU原理详解及代码实现

对目标检测边框回归的SIoU损失函数进行原理详解及代码实现

Openai神作Dalle2理论和代码复现

Openai神作Dalle2理论和代码复现

NVIDIA VPI架构解析

VPI 是一个软件库,提供了一系列计算机视觉和图像处理算法,可以在各种硬件加速器中无缝执行。这些加速器称为后端。VPI 的目标是为计算后端提供统一的接口,同时保持高性能。它通过暴露底层硬件及其操作的数据的薄而有效的软件抽象来实现这一点。此图说明了 VPI 的体系结构:API 遵循在初始化阶段进行对象

目标检测指标mAP详解

相信刚刚接触目标检测的小伙伴也是有点疑惑吧,目标检测的知识点和模型属实有点多,想要工作找CV的话,目标检测是必须掌握的方向了。我记得在找实习的时候,面试官就问到了我目标检测的指标是什么,答:mAP!问:mAP是什么?我:.......!☺所以在本文中我也是详细说一下mAP 的含义,有什么不对的或者不

Deformable DETR源码解读

Deformable DETR源码解读

PointNet解读

PointNet解决的问题:如上图所示:1.点云图像的分类(整片点云是什么物体)2.点云图像的部件分割(整片点云所代表的物体能拆分的结构)3.点云图像的语义分割(将三维点云环境中不同的物体用不同的颜色区分开)论文中展示的输入输出效果:1.部件分割的效果(左边是输入不完整的点云,右边是输入完整的点云)

深度学习论文精读[7]:nnUNet

相较于常规的自然图像,以UNet为代表的编解码网络在医学图像分割中应用更为广泛。常见的各类医学成像方式,包括计算机断层扫描(Computed Tomography, CT)、核磁共振成像(Magnetic Resonance Imaging, MRI)、超声成像(Ultrasound Imaging

2022年第二届长三角高校数学建模竞赛B题经验、论文、代码展示

2022年第二届长三角高校数学建模竞赛B题经验、论文、代码展示1、题目要求其中数据附件一数据(截图部分):附件二数据(部分截图):在这里插入代码片问题一到问题四的思路:针对问题一,对附件 1 中的 5 个表单的四个传感器数据进行分析,提取相关特征。研究发现 VMD 方法在可以避免模态混叠问题。VMD

1、MPC 算法(模型预测控制算法(MPC算法)轨迹跟踪控制)

MPC 跟踪圆形轨迹/直线轨迹 MPC 跟踪双移线轨迹 MPC 进行局部路径规划+轨迹跟踪 MPC跟踪直线轨迹 N MPC 对直线轨迹进行跟踪 MPC 算法跟踪五次多项式曲线以上为目录推荐学习的软件:matlab (2019a)+carsim(2016)无人驾驶知识架构:第一层:全局路径规划 二 环

AI艺术的背后:详解文本生成图像模型【基于 Diffusion Model】

GLIDE 使用了文本作为条件,来实现文本引导的扩散模型,在文本引导上面,文中主要使用了两种策略,Classifier-Free Diffusion Guidence 以及 CLIP 来作为条件监督,同时使用了更大的模型,在数据量上,和DALL-E 相似。实际上,扩散模型做的事情本质上是一样的,不同

数字图像处理总结(冈萨雷斯版)

数字图像处理(冈萨雷斯版本)课程复习

相机模型、相机标定及基于yolov5的单目测距实现

相机模型、相机标定及基于yolov5的单目测距实现1 前言2 相机模型及单目测距原理3 相机参数标定3.1 内参矩阵3.2 内参标定1 前言在摄像头成像过程中,物体反射的光线通过摄像头的凸透镜打在成像器件上,形成一张图片。这是一个三维物体转换为二维图像的过程。在这个过程中,丢失了物体的深度信息,所以

CVPR 2022 | 最全25+主题方向、最新50篇GAN论文汇总

一顿午饭外卖,成为CV视觉前沿弄潮儿35个主题!ICCV 2021最全GAN论文汇总超110篇!CVPR 2021最全GAN论文梳理超100篇!CVPR 2020最全GAN论文梳理在最新的视觉顶会CVPR2022会议中,涌现出了大量基于生成对抗网络GAN的论文,广泛应用于各类视觉任务;下述论文已分类

MAE详解

目录一、介绍二、网络结构1. encoder2. decoder3. LOSS三、实验全文参考:论文阅读笔记:Masked Autoencoders Are Scalable Vision Learners_塔_Tass的博客-CSDN博客masked autoencoders(MAE)是hekai

登录可以使用的更多功能哦! 登录
作者榜
...
资讯小助手

资讯同步

...
内容小助手

文章同步

...
Deephub

公众号:deephub-imba

...
奕凯

公众号:奕凯的技术栈