常用的优化器合集

总结了常用的优化器(SGD、Adagrad、Adadelta、RMSprop、Adam、Adamax、Nadam等等。),其中包括梯度下降法、动量优化法和自适应学习率优化算法三种,分别从原理、公式、优缺点以及pytorch及tensorflow2的官方代码展示这几个方面进行演示,最后可视化对比了各个

CUDA卸载&&重装

CUDA卸载&&重装

联邦学习 (FL) 中常见的3种模型聚合方法的 Tensorflow 示例

联合学习 (FL) 是一种出色的 ML 方法,它使多个设备(例如物联网 (IoT) 设备)或计算机能够在模型训练完成时进行协作,而无需共享它们的数据。

基于卷积神经网络(cnn)的手写数字识别(PyTorch)

手写数字识别应用广泛,对其研究有重要价值。在众多算法中,卷积神经网络在手写数字识别上表现突出,而且在实现上诸多优点。使用卷积神经网络来处理手写数字是一个很好的选择。pytorch在算法实现上有着简洁,优雅等特点。因此采用卷积神经网络算法和pytorch框架来实现手写数字识别。

Diffusion 和Stable Diffusion的数学和工作原理详细解释

扩散模型的兴起可以被视为人工智能生成艺术领域最近取得突破的主要因素。而稳定扩散模型的发展使得我们可以通过一个文本提示轻松地创建美妙的艺术插图。所以在本文中,我将解释它们是如何工作的。

【生成模型】DDPM概率扩散模型(原理+代码)

DDPM即 Denoising Diffusion Probabilistic Model概率扩散模型,原理+代码解析

ChatGPT-最强AI模型!ChatGPT国内使用教程 ChatGPT注册

最近想必大家也听说过ChatGPT,从他的名字中chat也可见一斑,它是一个以对话方式进行交互的人工智能模型。由OpenAI开发,它能够根据用户输入的文本内容,自动生成新的文本内容。它的名称来源于它所使用的技术—— GPT-3 架构,即生成式语言模型的第 3 代。目前,用户只需进行注册,就可开始与

【论文导读】 - 关于联邦图神经网络的3篇文章

图神经网络( GNNs )凭借其强大的处理实际应用中广泛存在的图数据的能力,受到了广泛的研究关注。然而,随着社会越来越关注数据隐私,GNNs面临着适应这种新常态的需要。这导致了近年来联邦图神经网络( FedGNNs )研究的快速发展。虽然前景广阔,但这一跨学科领域感兴趣的研究者来说是极具挑战性的。对

OpenAI是什么?

在未来,人工智能将是一个巨大的行业。OpenAI正致力于创造一个生态系统,该系统能够使任何人都可以使用、分享和扩展其 AI技能。它为用户提供了一种新的方式,让任何人都可以学习新技术并且在这个世界上变得更好。

推荐系统实战5——EasyRec 在DSSM召回模型中添加负采样构建CTR点击平台

当物品池很大上百万甚至是上亿的时候,不能仅考虑少量的正样本与负样本,因为物品太多,大多数物品都是负样本,此时双塔召回模型常常需要针对每个正样本采样一千甚至一万的负样本才能达到比较好的召回效果,

李沐《动手学深度学习》d2l——安装和使用

今天想要跟着沐神学习一下循环神经网络,在跑代码的时候,d2l出现了问题,这里记录一下解决的过程,方便以后查阅。

【深度学习】3-从模型到学习的思路整理

关于训练模型的整个思路老是不太流畅,因此做了一些整理。

为深度学习选择最好的GPU

最后现在4090还是处于耍猴的状态,基本上要抢购或者加价找黄牛但是16384 CUDA + 24GB,对比3090 的10496 CUDA ,真的很香。而4080 16G的9728CUDA 如果价格能到7000内,应该是一个性价比很高的选择。12G的 4080就别考虑了,它配不上这个名字。对于AMD

出现 CUDA out of memory 的解决方法

(我的网络调整不可行,但是你们可试试这个方法排查),可能有些人可以调整。既然网络过大,调整其batch_size,让其变小即可(需要是2的倍数),减少原本需要 requires_grad=True 的计算的内存消耗。这个方法坏处是精度准确度可能会被影响,甚至减少后,反向传播期间会溢出。类似以下代码,

YOLOv5+姿态估计HRnet与SimDR检测视频中的人体关键点

一、前言由于工程项目中需要对视频中的person进行关键点检测,我测试各个算法后,并没有采用比较应用化成熟的Openpose,决定采用检测精度更高的HRnet系列。但是由于官方给的算法只能测试数据集,需要自己根据算法模型编写实例化代码。本文根据SimDR工程实现视频关键点检测。SimDR根据HRne

DQN(deep Q-network)算法简述

基本概念;进阶技巧;连续动作的场景

labelImg 使用以及安装教程---图像标注工具

目录 labelImg 使用教程LabelImg简介LabelImg用法步骤 (PascalVOC)步骤 (YOLO)创建预定义的类注释可视化热键验证图片设置困难识别对象如何重置设置实际操作相关和附加工具labelImg安装在gitbash的安装从源代码构建使用 Docker拓展roLabelImg

数学建模(三):预测

数学建模(三):预测

Mindspore体验dcgan生成漫画头像

在第一篇中我们实现了昇思平台的安装与初体验,这一次我们可以进行对它深入的了解与尝试。想要了解安装部署的同学请去看我的第一篇哈。本文对通过昇思框架实现对抗神经网络实现动漫头像识别以及会遇到的问题进行了简单的介绍。最后自己生成的动漫头像也是非常的有意义,值得一试。欢迎大家加入昇思社区,一起讨论昇思框架的

从视频到音频:使用VIT进行音频分类

在本文中,我们将利用ViT - Vision Transformer的是一个Pytorch实现在音频分类数据集GTZAN数据集-音乐类型分类上训练它。

登录可以使用的更多功能哦! 登录
作者榜
...
资讯小助手

资讯同步

...
内容小助手

文章同步

...
Deephub

公众号:deephub-imba

...
奕凯

公众号:奕凯的技术栈