LEC: 基于Transformer中间层隐藏状态的高效特征提取与内容安全分类方法

通过利用Transformer中间层的隐藏状态,研究提出了层增强分类(LEC)技术,该技术能够以极少的训练样本和参数实现高效的内容安全和提示注入攻击分类,显著提升了模型的性能,并验证了其跨架构和领域的泛化能力。

Differential Transformer: 通过差分注意力机制提升大语言模型性能

DIFF Transformer通过创新的差分注意力机制成功提升了模型性能,特别是在长文本理解、关键信息检索和模型鲁棒性等方面。

大语言模型(LLM)安全:十大风险、影响和防御措施

大语言模型(LLM)安全对于防止未经授权的访问和滥用敏感数据至关重要。由于这些模型处理大量信息,数据泄露可能会导致严重的隐私侵犯和知识产权盗窃。通过加密、访问控制和定期审计确保数据保护有助于降低这些风险,保护大语言模型(LLM)处理的信息的完整性和机密性。

LLM2CLIP:使用大语言模型提升CLIP的文本处理,提高长文本理解和跨语言能力

LLM2CLIP 为多模态学习提供了一种新的范式,通过整合 LLM 的强大功能来增强 CLIP 模型。

25 个值得关注的检索增强生成 (RAG) 模型和框架

本文深入探讨 25 种先进的 RAG 变体,每一种都旨在优化检索和生成过程的特定方面。从标准实现到专用框架,这些变体涵盖了成本限制、实时交互和多模态数据集成等问题,展示了 RAG 在提升 NLP 能力方面的多功能性和潜力。

SMoA: 基于稀疏混合架构的大语言模型协同优化框架

在大语言模型(LLM)快速发展的背景下,研究者们越来越关注如何通过多代理系统来增强模型性能。传统的多代理方法虽然避免了大规模再训练的需求,但仍面临着计算效率和思维多样性的挑战。本文提出的稀疏代理混合(Sparse Mixture-of-Agents, SMoA)框架,通过借鉴稀疏专家混合(Spars

SMoA: 基于稀疏混合架构的大语言模型协同优化框架

通过引入稀疏化和角色多样性,SMoA为大语言模型多代理系统的发展开辟了新的方向。

Tokenformer:基于参数标记化的高效可扩展Transformer架构

本文是对发表于arXiv的论文 "TOKENFORMER: RETHINKING TRANSFORMER SCALING WITH TOKENIZED MODEL PARAMETERS" 的深入解读与扩展分析。

基于PyTorch的大语言模型微调指南:Torchtune完整教程与代码示例

**Torchtune**是由PyTorch团队开发的一个专门用于LLM微调的库。它旨在简化LLM的微调流程,提供了一系列高级API和预置的最佳实践,使得研究人员和开发者能够更加便捷地对LLM进行调试、训练和部署。

Github上的十大RAG(信息检索增强生成)框架

随着对先进人工智能解决方案需求的不断增长,GitHub上涌现出众多开源RAG框架,每一个都提供了独特的功能和特性。

LLM-Mixer: 融合多尺度时间序列分解与预训练模型,可以精准捕捉短期波动与长期趋势

LLM-Mixer通过结合多尺度时间序列分解和预训练的LLMs,提高了时间序列预测的准确性。它利用多个时间分辨率有效地捕捉短期和长期模式,增强了模型的预测能力

RAPTOR:多模型融合+层次结构 = 检索性能提升20%,结果还更稳健

RAPTOR通过结合多个检索模型,构建层次化的信息组织结构,并采用递归摘要等技术,显著提升了检索系统的性能和适应性。

【白嫖 Cloudflare】之免费 AI 服务,从API调用到应用搭建

免费 AI 服务,一学就会,不学后悔

PAIRDISTILL: 用于密集检索的成对相关性蒸馏方法

成对相关性蒸馏(Pairwise Relevance Distillation, PAIRDISTILL)。

扩散引导语言建模(DGLM):一种可控且高效的AI对齐方法

扩散引导语言建模(Diffusion Guided Language Modeling, DGLM)。DGLM旨在结合自回归生成的流畅性和连续扩散的灵活性,为可控文本生成提供一种更有效的方法。

SCoRe: 通过强化学习教导大语言模型进行自我纠错

这是谷歌9月发布在arxiv上的论文,研究者们提出了一种新方法**自我纠错强化学习(SCoRe)**,旨在使大语言模型能够在没有任何外部反馈或评判的情况下"即时"纠正自己的错误。

Minstrel自动生成结构化提示,让AI为AI写提示词的多代理提示生成框架

LangGPT作为一个结构化的提示设计框架,具有良好的系统性和可重用性,易于学习和使用。Minstrel能够通过多代理协作自动生成高质量的结构化提示,在某些情况下甚至超过人类专家的表现。结构化提示(无论是Minstrel生成还是手动编写)在指导LLMs执行任务时表现更好,特别是对于较大规模的模型。然

Minstrel自动生成结构化提示,让AI为AI写提示词的多代理提示生成框架

在人工智能快速发展的今天,如何有效利用大型语言模型(LLMs)成为了一个普遍关注的话题。这是9月份的一篇论文,提出了LangGPT结构化提示框架和Minstrel多代理提示生成系统,为非AI专家使用LLMs提供了强大支持。

最强开源Qwen2.5:本地部署 Ollma/vLLM 实测对比,邀你围观体验

本地部署大模型该用哪款框架?本文以 Qwen2.5 为例,实测了 Ollama/vLLM。综合来看,Ollma 在**存储、计算、效率**三方面,均完爆 vLLM。

登录可以使用的更多功能哦! 登录
作者榜
...
资讯小助手

资讯同步

...
内容小助手

文章同步

...
Deephub

公众号:deephub-imba

...
奕凯

公众号:奕凯的技术栈