torch中如何使用预训练权重

关于torch预训练权重载入的问题

mmsegmentation框架SegFormer训练自己的数据集

使用mmsegmentation中的SegFormer网络训练自己的数据集

ChatGPT新进展GPT-4 模型介绍

虽然在许多现实场景中,GPT-4的能力不如人类,但它在各种专业和学术基准上表现出了人类的水平,包括以大约前10%的成绩通过模拟律师资格考试。GPT-4是一个大型多模态模型(接受图像和文本输入,输出文本输出),虽然在许多现实场景中不如人类,但在各种专业和学术基准上表现出与人类相当的性能。

NLP(自然语言处理)

目前存在的问题有两个方面:一方面,迄今为止的语法都限于分析一个孤立的句子,上下文关系和谈话环境对本句的约束和影响还缺乏系统的研究,因此分析歧义、词语省略、代词所指、同一句话在不同场合或由不同的人说出来所具有的不同含义等问题,尚无明确规律可循,需要加强语用学的研究才能逐步解决。对大规模文档进行索引。自

评价类模型---TOPSIS法

TOPSIS法统一指标类型标准化处理我们根据例子让大家更好的知道应该如何计算总结第一步:将原始矩阵正向化第二步:正向化矩阵标准化第三步:计算得分并归一化练习题模型的扩展代码运行的几个问题基于熵权法对TOPSIS模型的修正熵权法的步骤...

激光雷达点云与单幅图像配准/映射变为彩色点云

本文提供激光雷达采集的点云与单幅二维图像之间的配准方法,目的是实现点云到图像之间的映射,同时也可以将点云转变为彩色点云。关于激光雷达点云与图像之间的映射原理有网上给出了很多,但是具体转换的方法或开源的代码却较少。因此本文就以一副点云和一副图像进行介绍,并给出具体的实现过程。

YOLOv5用TensorBoard可视化结果解读

TP为正确识别的判例个数,FN为有目标但识别为没有目标的判例个数。FP为没有目标但识别为有目标的判例个数。

【SLAM】LVI-SAM解析——综述

LVI-SAM可以认为是LIO-SAM和VINS-MONO的合体,在此基础上的修改不大。githubpaperLVI-SAM这个注释版代码中一些关于坐标系的注释我认为是有错误的,大家擦亮眼睛。和我也分别写过比较详细的代码解析,详情见链接。.........

传统与深度学习遥感变化监测遥感技术路线与方法

由于遥感算法、数据源质量等原因,遥感变化信息提取一般采用目视解译方式进行,但是目视解译方式费时费力,大区域工作效率很低。而深度学习可以在很短时间内按照模型训练要求,快速全面的进行解译,可以大大提高遥感解译的效效率,因此一般采用传统解译方法与深度学习相结合的方法进行。

ChatGPT核心技术奠基者,在中国开放平台

早在 2016 年,Jerry 就在用同样他认为最简单的方式解释他们的技术方向,但在和很多机构投资人沟通的过程中,Jerry 在技术方向上得到了非常多的质疑声,VC 们问过最多的问题就是:“如果单样本学习是自然语言处理 NLP 正确的方向,为什么谷歌每年将数十亿美金投入在完全相反的科研方向?最好的人

校园打架行为识别检测 yolov7

校园打架行为识别检测系统基于python基于yolov7深度学习框架+边缘分析技术,自动对校园、广场等区域进行实时监测,当监测到有人打架斗殴时,系统立即抓拍存档语音提醒,并将打架行为回传给学校后台,提醒及时处理打架情况。YOLOv7 在 5 FPS 到 160 FPS 范围内,速度和精度都超过了所有

【毕业设计】疲劳驾驶检测系统 - python 深度学习

🔥 Hi,大家好,这里是丹成学长的毕设系列文章!🔥 对毕设有任何疑问都可以问学长哦!这两年开始,各个学校对毕设的要求越来越高,难度也越来越大… 毕业设计耗费时间,耗费精力,甚至有些题目即使是专业的老师或者硕士生也需要很长时间,所以一旦发现问题,一定要提前准备,避免到后面措手不及,草草了事。为了

【Pytorch项目实战】之生成式模型:DeepDream、风格迁移、图像修复

现有一个猫狗分类网络模型,当输入一张云的图像进行判断时,假设这朵云比较像狗,则机器提取的特征也会偏向于狗的特征。假设特征对应的概率分别为:[狗,猫] = [x1,x2] = [0.6,0.4],那么采用L2范数(L2 = x1 ^ 2 + x2 ^ 2)可以很好达到放大特征的效果,最终图像越来越像狗

【控制】动力学建模简介 --> 牛顿-欧拉 (Newton-Euler) 法和拉格朗日 (Lagrange) 法

牛顿-欧拉方法是最开始使用的动力学建模分析方法,由于牛顿方程描述了平移刚体所受的外力、质量和质心加速度之间的关系,而欧拉方程描述了旋转刚体所受外力矩、角加速度、角速度和惯性张量之间的关系,因此可以使用牛顿-欧拉方程描述刚体的力、惯量和加速度之间的关系,建立刚体的动力学方程。拉格朗日方程是另一种经典的

用yolov5图像分割做人物抠像

用yolov5的6.2版本新推出的图像分割模型来做人物抠像,速度很快效果也不错!

对比学习 ——simsiam 代码解析。:

2022李宏毅作业HW3 是食物的分类 ,但是我怎么尝试 再监督学习的模式下 准确率都达不到百分之60 .。半监督也感觉效果不明显。 所以 这次就想着对比学习能不能用来解决这个问题呢 。?看了一圈,感觉simsiam是对比学习里比较简单的一种方法,好像效果也不错。 所以来看一看这个东西是怎么玩的。

人工智能如何用于静态生物特征验证

静态生物特征验证是一种常用的 AI 功能,它可以实时捕捉人脸,并可以在不提示用户移动头部或面部的情况下确定人脸是否属于真人。通过这种方式,该服务有助于提供获得积极反馈的便捷用户体验。静态生物特征验证需要 RGB 摄像头,并且能够通过细节(例如莫尔图案或纸上的反射)区分真人的面部和欺骗攻击(例如面部和

Introducing Tome, AI讲演助手

随着ChatGPT进入人们的视野,AI开始在越来越多的领域大展拳脚,近期,一款名为Tome的讲演编辑工具(类似幻灯片)推出了AI辅助创作的功能。

不写代码、年薪百万,带你玩赚ChatGPT提示工程-高级提示

随着ChatGPT的大火,提示工程在大模型中的重要性不言而喻,本文参考国外完成国内中文版本的《提示工程指南》,希望能够和大家一起交流,分享及发现提示工程的美妙之处。文章所有内容可以在中找到。到这个时候,应该很明显了,改进提示可以帮助在不同任务上获得更好的结果。这就是提示工程的整个理念。虽然那些例子很

登录可以使用的更多功能哦! 登录
作者榜
...
资讯小助手

资讯同步

...
内容小助手

文章同步

...
Deephub

公众号:deephub-imba

...
奕凯

公众号:奕凯的技术栈