PyTorch深度学习实战 | 基于ResNet的人脸关键点检测

人脸关键点检测指的是用于标定人脸五官和轮廓位置的一系列特征点的检测,是对于人脸形状的稀疏表示。关键点的精确定位可以为后续应用提供十分丰富的信息。因此,人脸关键点检测是人脸分析领域的基础技术之一。许多应用场景(如人脸识别、人脸三维重塑、表情分析等)均将人脸关键点检测作为其前序步骤来实现。本文将通过深度

Easy Deep Learning——卷积层

由于卷积核尺寸可以远远小于输入尺寸,即减少需要学习的参数的数量,并且针对每个卷积层可以使用多个卷积核获取输入的特征映射,对数据(尤其是图像)具有很强的特征提取和表示能力,并且在卷积运算之后,使得卷积神经网络结构对输入的图像具有平移不变的性质。下面使用一张图像来展示经过卷积后,输出的特征映射的结果。在

深度学习之图像分类(十八)-- Vision Transformer(ViT)网络详解

深度学习之图像分类(十八)Vision Transformer(ViT)网络详解目录深度学习之图像分类(十八)Vision Transformer(ViT)网络详解1. 前言2. ViT 模型架构2.1 Embedding 层2.2 Transformer Encoder 层2.3 MLP Head

一天学会应用GAN扩充数据集(pytorch)

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、GAN是什么?二、实现1.总结前言提示:这里可以添加本文要记录的大概内容:例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。提示:以下是本篇文章正文内

利用pytorch 模型载入部分权重

本文介绍如何在pytorch中载入模型的部分权重第1个常见的问题: 在分类网络中,当载入的预训练权重的全连接层与我们自己实例化模型的节点个数不一样时,该如何载入?比如在花卉数据集分类时只有5类,所以最后一层全连接层节点个数为5,但是我们载入的预训练权重是针对ImageNet-1k的权重,它的全连接层

基于pytorch使用LSTM进行文本情感分析

下载链接项目中使用的模型是LSTM,在模型中我们定义了三个组件,分别是embedding层,lstm层和全连接层。Embedding层:将每个词生成对应的嵌入向量,就是利用一个连续型向量来表示每个词Lstm层:提取语句中的语义信息Linear层:将结果映射成2大小用于二分类,即正反面的概率注意:在L

Pytorch中torch.sort()和torch.argsort()函数解析

torch.sort(),如下图所示:输入input,在dim维进行排序,默认是dim=-1对最后一维进行排序,descending表示是否按降序排,默认为False,输出排序后的值以及对应值在原输入imput中的下标3.1 dim = -1 表示对每行中的元素进行升序排序,descending=F

DBNet实战:详解DBNet训练与测试(pytorch)

论文连接:https://arxiv.org/pdf/1911.08947.pdfgithub链接:github.com网络结构首先,图像输入特征提取主干,提取特征;其次,特征金字塔上采样到相同的尺寸,并进行特征级联得到特征F;然后,特征F用于预测概率图(probability map P)和阈值图

pycharm配置深度学习环境:conda env create -f environment.yml报错

pycharm配置深度学习环境报错(已解决)

pytorch对网络层的增,删, 改, 修改预训练模型结构

1.我们使用vgg11网络做示例, 看一下网络结构:加载本地的模型:vgg16 = models.vgg16(pretrained=False) #打印出预训练模型的参数vgg16.load_state_dict(torch.load('vgg16-397923af.pth'))加载库中的模型imp

Python 3.11 安装深度学习Pytorch开发环境

听说Python3.11有很多改进,运行更快,于是安装了一下,然后重新安装深度学习需要的依赖库

Windows下YOLO V5环境(pytorch,cuda)配置及部署

介绍了anaconda的安装以及pytorch的下载和yolov5的部署,还有可能会遇到的各种问题

[九]深度学习Pytorch-transforms图像增强(剪裁、翻转、旋转)

深度学习Pytorch-transforms图像增强(剪裁、翻转、旋转)

爱因斯坦求和约定 含代码einsum

爱因斯坦求和约定(Einstein summation convention)是一种标记的约定, 又称为爱因斯坦标记法(Einstein notation), 可以基于一些约定简写格式表示多维线性代数数组操作,让表达式更加简洁明了。

Anconda虚拟环境创建及pytorch的安装步骤

Anconda虚拟环境创建及pytorch的安装步骤,包括conda install pytorch,torchvision,torchaudio,cudatoolkit。

Transformer 优秀开源工作:timm 库 vision transformer 代码解读

timm库(PyTorchImageModels,简称timm)是一个巨大的PyTorch代码集合,已经被官方使用了。

在anaconda下安装pytorch + python3.8+GPU/CPU版本 详细教程

在Anaconda下用命令安装pytorch,手把手教会。按照安装CPU版本和GPU两个版本进行分类,一般运行程序建议使用CPU版本的,安装更方便。注意!如果切换镜像后当出现下载不了的情况,就先切换默认源,然后再修改另一个可以使用的conda源(一定要先恢复默认,再换另一个!!!)......

解决nvcc显示不是内部或外部命令的问题

问题描述安装CUDA后,配置完环境变量,始终nvcc -V找不到命令,如下图解决方法(一)检查是否正确安装首先查看一下是否确实成功安装好了CUDA,在C盘中找到CUDA文件夹,并且打开v10.0文件夹,找到对应的位置,即C:\Program Files\NVIDIA GPU Computing To

自学Python:旋转图像角度

使用Pillow模块提供的rotate()方法可以逆时针旋转图片,如果旋转90度或者270度,图像的高度与宽度会有变化,图片的比率不变,多的部分以黑色图像替代。from PILimport Imagetp=Image.open(‘1.png’)tp.rotate(45).save(‘45.png’)

ModuleNotFoundError: No module named ‘torch‘ 解决方案

在运行python程序时遇到下面的问题:ModuleNotFoundError: No module named ‘torch’这是由于没有安装torch包导致的,我们可以很简单的在pycharm安装或者在cmd命令行安装,但是由于torch安装包过大,比如torch-1.9.1就要大约200M,上

登录可以使用的更多功能哦! 登录
作者榜
...
资讯小助手

资讯同步

...
内容小助手

文章同步

...
Deephub

公众号:deephub-imba

...
奕凯

公众号:奕凯的技术栈