spss分析方法-聚类分析
聚类分析是根据研究对象的特征,按照一定标准对研究对象进行分类的一种分析方法。下面我们主要从下面四个方面来解说: 一、实际应用 聚类分析的目标就是在相似的基础上收集数据来分类。聚类源于很多领域,包括数学,计算机科学,统计学,生物学和经济学。在不同的应用领域,很多聚类技术都得到了发展,这些技术方法被用
使用CycleGAN训练自己制作的数据集,通俗教程,快速上手
总结了使用**CycleGAN**训练自己制作的数据集,这里的教程例子主要就是官网给出的斑马变马,马变斑马,两个不同域之间的相互转换。教程中提供了官网给的源码包和我自己调试优化好的源码包,大家根据自己的情况下载使用,推荐学习者下载我提供的源码包,可以少走一些弯路,按照我的教程,能较快上手训练使用..
自编码器(Auto-Encoder)
一、自编码器原理自编码器算法属于自监督学习范畴,如果算法把x作为监督信号来学习,这里算法称为自监督学习(Self-supervised Learning)在监督学习中神经网络的功能:。是输入的特征向量长度,是网络输出的向量长度。对于分类问题,网络模型通过把长度为输入特征向量????变换到长度为的输出
人工智能导论——遗传算法求解TSP问题实验
一、实验目的:熟悉和掌握遗传算法的原理、流程和编码策略,并利用遗传算法求解组合优化问题,理解求解TSP问题的流程并测试主要参数对结果的影响。二、实验原理:旅行商问题,即TSP问题(Traveling Salesman Problem)是数学领域中著名问题之一。假设有一个旅行商人要拜访n个城市,他必须
解决module ‘tensorflow‘ has no attribute ‘...‘系列
针对:TensorFlow版本1到2的代码不同
Yolov5应用轻量级通用上采样算子CARAFE
手把手教你YOLOv5添加轻量化上采样算子CARAFE
人工智能:卷积神经网络及YOLO算法 入门详解与综述(二)
卷积神经网络的基本结构由输入层、卷积层、池化层(也称为取样层)、全连接层及输出层构成。卷积层和池化层一般会取若干个,采用卷积层和池化层交替设置,即一个卷积层连接一个池化层,池化层后再连接一个卷积层,依此类推。由于卷积层中输出特征面的每个神经元与其输入进行局部连接,并通过对应的连接权值与局部输入进行加
混淆矩阵 (Confusion Matrix)
假设现在有一个分类器A,这个分类器A的作用是告诉一张图片是不是汉堡,那我想知道这个分类器A的效果好不好,应该怎么办呢?最简单的方法是将大量的样本放进到费雷其A当中,让他自己判断这些图片是不是汉堡。经过上面的过程就可以得到一张表格:实际上这张表格是非常庞大的。有成千上万的图片,当他的维度十分大的时候是
【目标检测】YOLOv5遇上知识蒸馏
本文主要来研究知识蒸馏的相关知识,并尝试用知识蒸馏的方法对YOLOv5进行改进。
【数据科学项目02】:NLP应用之垃圾短信/邮件检测(端到端的项目)
随着产品和服务在线消费的增加,消费者面临着收件箱中大量垃圾邮件的巨大问题,这些垃圾邮件要么是基于促销的,要么是欺诈性的。由于这个原因,一些非常重要的消息/电子邮件被当做垃圾短信处理了。在本文中,我们将创建一个 垃圾短信/邮件检测模型,该模型将使用朴素贝叶斯和自然语言处理(NLP) 来确定是否为垃圾短
深度学习——VGG16模型详解
1、网络结构VGG16模型很好的适用于分类和定位任务,其名称来自牛津大学几何组(Visual Geometry Group)的缩写。根据卷积核的大小核卷积层数,VGG共有6种配置,分别为A、A-LRN、B、C、D、E,其中D和E两种是最为常用的VGG16和VGG19。介绍结构图:conv3-64 :
AI眼中的世界 ——人工智能绘画入门
Disco Diffusion 是发布于 Google Colab 平台的一款利用人工智能深度学习进行数字艺术创作的工具,它是基于 MIT 许可协议的开源工具,可以在 Google Drive 直接运行,也可以部署到本地运行,目前最新的版本是 Disco Diffusion v5.4。.......
SE注意力机制
SE注意力机制虽然基础,但是非常好用,也是应用最广泛的注意力机制之一,在此记录学习
yolov5模型压缩之模型剪枝
稀疏剪枝
图像恢复 SWinIR : 彻底理解论文和源代码 (注释详尽)
文章目录SwinIR 论文SWinIR 网络结构整体框架浅层特征提取深层特征提取图像重建模块主要代码理解SwinIRMLPPatch EmbeddingWindow Attention残差 Swin Transformer 块 (RSTB)HQ Image Reconstruction一个测试实例参
SPSS软件实操——ARIMA时间序列预测模型
案例:基于ARIMA模型对螺纹钢价格预测——以南昌市为例
六自由度机器人(机械臂)运动学建模及运动规划系列(四)——轨迹规划
本篇介绍了六轴机器人关节空间以及笛卡尔空间轨迹规划的简单方法,并给出了一种几何解法,以简化规划过程,并提供了简单的Matlab轨迹规划函数介绍。
【YOLOv7_0.1】网络结构与源码解析
对YOLOv7_0.1版本的整体网络结构及各个组件,结合源码和train文件夹中的配置文件进行解析
常见经典目标检测算法
目标检测(Object Dectection)的任务是图像中所有感兴趣的目标(物体),确定他们的类别和位置。除图像分类外,目标检测要解决的核心问题是:
猿创征文|深度学习基于ResNet18网络完成图像分类
CIFAR-10数据集包含了10种不同的类别、共60,000张图像,其中每个类别的图像都是6000张,图像大小均为32×3232×32像素。