【OpenCV】车辆识别 C++ OpenCV 原理介绍 + 案例实现

本文主要以车辆识别为目标,利用 C++语言 结合 Qt + OpenCV 进行图像处理相关步骤的讲解

【Pytorch】torch.nn.LeakyReLU()

Hello!ଘ(੭ˊᵕˋ)੭昵称:海轰标签:程序猿|C++选手|学生简介:因C语言结识编程,随后转入计算机专业,获得过国家奖学金,有幸在竞赛中拿过一些国奖、省奖…已保研学习经验:扎实基础 + 多做笔记 + 多敲代码 + 多思考 + 学好英语!唯有努力💪本文仅记录自己感兴趣的内容文章仅作为个人学习笔

基于BP神经网络的PID智能控制

PID控制要获得较好的控制效果,就必须通过调整好比例、积分和微分三种控制作用,形成控制量中既相互配合又相互制约的关系,这种关系不一定是简单的“线性组合”,从变化无穷的非线性组合中可以找出最佳的。神经网络所具有的任意非线性表达的能力,可以通过对系统性能的学习来实现具有最佳组合的PID控制。

【seaborn】sns.set() 绘图风格设置

从这个set()函数,可以看出,通过它我们可以设置背景色、风格、字型、字体等。我们定义一个函数,这个函数主要是生成100个0到15的变量,然后用这个变量画出6条曲线。那么,问题来了,有人会说,这个set()函数这么多参数,只要改变其中任意一个参数的值,绘图效果就会发生变化,那我们怎么知道哪种搭配是最

anaconda安装教程-手把手教你安装

9.skip,不安装VScode,否则点击InstallMicrosoftVSCode。1.打开cmd,输入conda,出现如下所示,则安装成功。3.anaconda版本对应的python版本。1.打开浏览器输入anaconda镜像。2.打开anaconda安装包列表。10.点击finish,安装完

ECCV2022论文列表(中英对照)

ECCV2022论文列表(中英对照)

2022 CCF BDCI 返乡发展人群预测 [0.9117+]

返乡发展人群预测:基于中国联通的大数据能力,通过使用对联通的信令数据、通话数据、互联网行为等数据进行建模,对个人是否会返乡工作进行判断A榜的结果为0.91171720。

机器学习实战——疫情数据分析与预测

机器学习如何做到疫情可视化——疫情数据分析与预测实战本文将带领大家爬取11个国家以及中国31个省(自治区、直辖市)在2022.0101-2022.06.19的新冠疫情数据。并且采用机器学习模型对2022.6.20-2022.6.30每一天的全国确诊人数、死亡人数、治愈人数进行预测,**做出疫情可视化

计算机视觉项目实战-目标检测与识别

本此博客我们简单的介绍一下目标检测与识别,我们从头开始介绍,从最简单的然后逐渐的走进项目。首先我们介绍使用深度学习和CV去做一个简单的目标识别项目。

新冠疫情预测模型--逻辑斯蒂回归拟合、SEIR模型

  通过构建统计学模型、数学模型,或者利用机器学习、深度学习方法拟合疫情发展趋势,利用历史数据对未来的确诊病例等疫情形势进行预测,比如说,逻辑斯蒂生长曲线拟合数据,预测未来几天可能的发展趋势;或者利用时间序列模型构建预测模型;也可用LSTM构建预测模型,一种特殊的RNN网络。以上方法,除生长曲线外,

(超详细)语音信号处理之特征提取

语音信号处理之特征提取要对语音信号进行分析,首先要分析并提取出可表示该语音本质的特征参数。有了特征参数才能利用这些特征参数进行有效的处理。根据提取参数的方法不同,可将语音信号分析分为时域,频域,倒频域,和其他域的分析方法。根据分析方法的不同,可将语音信号分析分为模型分析方法和非模型分析方法。本文主要

机器学习实战3:基于朴素贝叶斯实现单词拼写修正器(附Python代码)

本文基于朴素贝叶斯原理实现一个有趣的应用——单词拼写修正器,并梳理一些贝叶斯公式中的细节加深理解,最后给出python代码

计算机视觉——相机标定

相机标定

TCN(Temporal Convolutional Network,时间卷积网络)

1 前言 实验表明,RNN 在几乎所有的序列问题上都有良好表现,包括语音/文本识别、机器翻译、手写体识别、序列数据分析(预测)等。 在实际应用中,RNN 在内部设计上存在一个严重的问题:由于网络一次只能处理一个时间步长,后一步必须等前一步处理完才能进行运算。这意味着 RNN 不能像 CN

U-Net介绍

Unet 发表于 2015 年,属于 FCN 的一种变体。Unet 的初衷是为了解决生物医学图像的问题,由于效果确实很好后来也被广泛的应用在语义分割的各个方向,如卫星图像分割,工业瑕疵检测等。 Unet 跟 FCN 都是 Encoder-Decoder 结构,结构简单但很有效。 Unet主要可分为

机器学习——图像分类

1 图像分类的概念1.1 什么是图像分类?图像分类,根据图像信息中所反映出来的不同特征,把不同类别的目标区分开来的图像处理方法1.2 图像分类的难度●任何拍摄情 况的改变都将提升分类的难度1.3 CNN如何进行图像分类●数据驱动型方法通用流程1.收集图像以及对应的标签,形成数据集2.使用机器学习训练

改变conda虚拟环境的默认路径

conda环境默认安装在用户目录C:\Users\username.conda\envs下,如果选择默认路径,那么之后创建虚拟环境,也是安装在用户目录下。不想占用C盘空间,可以修改conda虚拟环境路径。(1)首先,找到用户目录下的.condarc文件(C:\Users\username)。**(2

PIE Engine机器学习遥感影像监督分类全流程(附源码)

本文中,作者基于PIE Engine遥感云计算平台进行遥感影像监督分类,详细介绍了遥感影像分类的数据预处理、模型训练及结果可视化。

登录可以使用的更多功能哦! 登录
作者榜
...
资讯小助手

资讯同步

...
内容小助手

文章同步

...
Deephub

公众号:deephub-imba

...
奕凯

公众号:奕凯的技术栈