Flink中ExecutionGraph的构建
在JobGraph向ExecutionGraph转化的过程中,主要的工作内容根据Operator的并行度来拆分JobVertext,每一个Jobvertex根据自身并行度会拆分成多个ExecutionVertex,使用IntermediateResultPartition对象来接收Execution
Flink的SQL开发
Table API和SQL是最上层的API,在Flink中这两种API被集成在一起,SQL执行的对象也是Flink中的表(Table),所以我们一般会认为它们是一体的。Flink是批流统一的处理框架,无论是批处理(DataSet API)还是流处理(DataStream API),在上层应用中都可以
Flink CDC 实时抽取 Oracle 数据-排错&调优
Flink CDC 于 2021 年 11 月 15 日发布了最新版本 2.1,该版本通过引入内置 Debezium 组件,增加了对 Oracle 的支持。对该版本进行试用并成功实现了对 Oracle 的实时数据捕获以及性能调优,现将试用过程中的一些关键细节进行分享。
深入理解 Flink(七)Flink Slot 管理详解
Flink 的 slot 管理分为 ResourceManager、TaskExecutor、JobMaster 3 个部分,本章节结合 Flink 源码对上述 3 个部分的协作关系、具体实现进行了深入剖析。
flink sql 实战实例 及延伸问题:聚合/数据倾斜/DAU/Hive流批一体 等
核心问题在于成本过高。甚至可以使用 10 分钟级别的分区策略,使用 Flink 的 Hive streaming source 和 Hive streaming sink ,可以大大提高 Hive 数仓的实时性到准实时分钟级,在实时化的同时,也支持针对 Table 全量的 Ad-hoc 查询,提高灵
记一次flink的job manager overuse情况
以前一直没出现过jm overuse的情况,今天刚好遇到,记录一下。18:21:36就已经失败shutting down了,而1。作业频繁重启又自行恢复,陷入循环。目前设置的是2G,需要。任务在18:21出现。
flink-1.17.2的单节点部署
Apache Flink 是一个开源的流处理和批处理框架,用于大数据处理和分析。它旨在以实时和批处理模式高效处理大量数据。Flink 支持事件时间处理、精确一次语义、有状态计算等关键功能。总体而言,Apache Flink 是构建实时和批处理数据处理应用程序的强大而灵活的框架,适用于大数据领域的各种
FlinkSql通用调优策略
使用DataGenerator 提前进行压测,了解数据的处理瓶颈、性能测试和消费能力开启minibatch:"table.exec.mini-batch.enabled", "true"开启Local+Global 两阶段聚合:"table.exec.mini-batch.enabled", "tr
Flink 1.17教程:并行度设置&优先级
在Flink中,可以用不同的方法来设置并行度,它们的有效范围和优先级别也是不同的。
python安装apache-flink报错
flink安装和报错解答
Flink中的容错机制
如果出现故障,我们恢复到之前保存的状态,故障时正在处理的所有数据都需要重新处理;我们只需要让源(source)任务向数据源重新提交偏移量、请求重放数据就可以了(即重新将故障时的数据读入Flink)。当然这需要源任务可以把偏移量作为算子状态保存下来,而且外部数据源能够重置偏移量;
【大数据面试题】007 谈一谈 Flink 背压
在流式处理框架中,如果下游的处理速度,比上游的输入数据小,就会导致程序处理慢,不稳定,甚至出现崩溃等问题。
Flink基础篇|001_Flink是什么
我们通常说的Flink是来Apache Flink,他是由Apache软件基金会开发的开源流处理框架,其核心是用Java和Scala编写的分布式流数据流引擎。Flink以数据并行和流水线方式执行任意流数据程序,Flink的流水线运行时系统可以执行批处理和流处理程序。此外,Flink的运行时本身也支持
【Flink-1.17-教程】-【五】Flink 中的时间和窗口(1)窗口(Window)
在批处理统计中,我们可以等待一批数据都到齐后,统一处理。但是在实时处理统计中,我们是来一条就得处理一条,那么我们怎么统计最近一段时间内的数据呢?引入“窗口”。所谓的“窗口”,一般就是划定的一段时间范围,也就是“时间窗”;对在这范围内的数据进行处理,就是所谓的窗口计算。所以窗口和时间往往是分不开的。接
flink多流操作(connect cogroup union broadcast)
2 connect连接操作2.1 connect 连接(DataStream,DataStream→ConnectedStreams)connect 翻译成中文意为连接,可以将两个数据类型一样也可以类型不一样 DataStream 连接成一个新 的 ConnectedStreams。需要注意的是,c
59、Flink CEP - Flink的复杂事件处理介绍及示例(4)- 延迟数据处理和三个实际应用示例
一、Flink 专栏Flink 专栏系统介绍某一知识点,并辅以具体的示例进行说明。1、Flink 部署系列本部分介绍Flink的部署、配置相关基础内容。2、Flink基础系列本部分介绍Flink 的基础部分,比如术语、架构、编程模型、编程指南、基本的datastream api用法、四大基石等内容。
Flink的流式数据流式计算
1.背景介绍流式数据流式计算是一种处理大规模、高速、实时数据的技术,它的核心是在数据流中进行实时计算和分析。随着大数据时代的到来,流式数据处理技术已经成为了一种必须掌握的技能。Apache Flink是一种流式数据处理框架,它可以处理大规模、高速的数据流,并提供实时计算和分析功能。在本文中,我们将深
Flink容错机制
在恢复时,Flink将从最近的检查点中读取状态数据,并尝试将任务恢复到该检查点之前的状态。总之,Flink的保存点功能为用户提供了灵活的状态管理选项,使得用户可以更好地控制和管理Flink作业的状态。更重要的是,在有状态的流处理中,任务需要保持其之前的状态,以便继续处理新数据。总之,Flink的保存
【大数据】Flink 中的 Slot、Task、Subtask、并行度
通过调整 task slot 的数量,用户可以定义 subtask 如何互相隔离。每个 TaskManager 有一个 slot,这意味着每个 task 组都在单独的 JVM 中运行(例如,可以在单独的容器中启动)。具有多个 slot 意味着更多 subtask 共享同一 JVM。同一 JVM 中的
【大数据】Flink 架构(三):事件时间处理
在事件时间模式下,Flink 流式应用处理的所有记录都必须包含时间戳。时间戳将记录和特定时间点进行关联,这些时间点通常是记录所对应事件的发生时间。但实际上应用可以自由选择时间戳的含义,只要保证流记录的时间戳会随着数据流的前进大致递增即可。正如前文所述,基本上所有现实应用场景都会出现一定程度的时间戳乱