【嵌入式AI开发】轻量级卷积神经网络MobileNetV1详解

本文对轻量级卷积神经网络MobileNetV1网络进行详解。MobileNetV1网络就是由若干个深度可分离卷积模块堆叠起来的,深度可分离卷积由DW卷积核PW卷积构成。

第二篇【AI与传奇开心果系列】Python的AI技术点库案例示例:详解AI工业应用算法原理

AI与传奇开心果系列博文系列博文目录Python的AI技术点库案例示例系列博文目录前言一、AI工业应用算法原理介绍二、机器学习在工业领域的应用算法示例代码三、深度学习算法在工业领域应用示例代码四、强化学习在工业领域应用示例代码五、自然语言处理在工业领域应用示例代码六、图像处理算法在工业领域应用示例代

论文推荐:用多词元预测法提高模型效率与速度

作者们提出了一种创新的多词元预测方法,该方法在提高大型语言模型(LLMs)的样本效率和推理速度方面展示了显著优势。

号称能打败MLP的KAN到底行不行?数学核心原理全面解析

这篇文章将涉及大量的数学知识,主要介绍KAN背后的数学原理。

PyTorch小技巧:使用Hook可视化网络层激活(各层输出)

这篇文章将演示如何可视化PyTorch激活层。可视化激活,即模型内各层的输出,对于理解深度神经网络如何处理视觉信息至关重要,这有助于诊断模型行为并激发改进。

【技能---ubuntu20.04更换国内镜像源】

安装好ubuntu20.04后,在下载软件等安装包的时候,速度特别的慢,为此就想着更换一下镜像源,以此来增加下载的速度!!!下面是换源的具体流程!!!提示:以下是本篇文章正文内容,下面案例可供参考以上到这里就更换完软件源了,如有不足之处,请大家斧正!!!

存内计算为AI大模型提供的支持以及挑战

存内计算技术作为一种新型的计算范式,将存储器与处理器紧密地集成在一起,实现了数据的高效处理和低延迟访问。这种技术有效地缓解了传统计算模式下存储器与处理器之间的带宽瓶颈问题,为大规模数据处理和人工智能应用提供了更高效的计算支持。存内计算技术的核心思想是在存储器中实现简单的计算操作,以降低数据传输的功耗

归一化技术比较研究:Batch Norm, Layer Norm, Group Norm

本文将使用合成数据集对三种归一化技术进行比较,并在每种配置下分别训练模型。记录训练损失,并比较模型的性能。

《生物识别技术:面对安全挑战的绝佳选择?》

在图像分类任务中,ResNet展现了出色的性能。智能推荐系统:神经网络在智能推荐系统中发挥着重要作用,通过学习用户的行为数据和物品的特征,实现个性化的推荐。未来,神经网络算法将不仅仅注重模型的准确性,还会注重模型的可解释性,为人们提供更加可信赖的人工智能应用。正则化:正则化是一种防止过拟合的方法,通

Quiet-STaR:让语言模型在“说话”前思考

本文将介绍一篇3月的论文Quiet-STaR:这是一种新的方法,通过鼓励LLM发展一种“内心独白”的形式来解决这一限制,这种基本原理生成有助于LLM通过完成任务或回答问题所涉及的步骤进行推理,最终获得更准确和结构良好的输出。

【AI】2024 年 AI 辅助研发趋势(详)

随着人工智能技术的不断发展,AI辅助研发在各行业中扮演着越来越重要的角色。本文将深入探讨2024年AI辅助研发的趋势,并分析其对科技创新和产业发展的影响。加强AI人才培养,提供实践机会,培养解决实际问题的能力。AI辅助设计系统在车辆结构优化、自动驾驶技术开发中起到关键作用,提高了车辆的性能和安全性。

从 人工智能学派 视角来看 人工智能算法

人工智能算法太多了,它们杂乱无章,我该怎么学?也许你得追根溯源到学派思想,把握其中的根本

爆肝3W多字,100多张配图!深度学习从小白到精通一篇博文帮你打开人工智能的大门建议收藏不容错过!!!

在介绍深度学习之前,我们先看下这幅图:人工智能>机器学习>深度学习。深度学习是机器学习的⼀个子集,也就是说深度学习是实现机器学习的一种方法。与机器学习算法的主要区别如下图所示:传统机器学习算术依赖人工设计特征,并进行特征提取,而深度学习方法不需要人工,而是依赖算法自动提取特征,这也是深度学习被看做黑

【人工智能图像补全复现】基于GAN的图像补全

本文解析和实现论文Globally and Locally Consistent Image Completion中的相关方法。论文亮点在于使用全局(整张图片)和局部(缺失补全部分)两种鉴别器来训练,并运用GAN使生成图像在各个尺度的特征与真实图像匹配。关键词:GAN;图像补全;多种鉴别器训练。

【人工智能Ⅱ】实验1:卷积神经网络应用

由上图可知,经过30次训练迭代后,蓝色部分的训练损失值曲线和橘色部分的测试损失值曲线整体均呈现下降趋势,且训练损失值的下降速度快于验证损失值的下降速度。由上图可知,经过30次训练迭代后,蓝色部分的训练准确率曲线和橘色部分的测试准确率曲线整体均呈现上升趋势,且训练准确率的上升速度快于验证准确率的上升速

sheng的学习笔记-AI-卷积神经网络经典架构-LeNet-5、AlexNet、VGGNet-16

LeNet,AlexNet,VGG16,卷积层,池化层

学习人工智能:吴恩达:什么是神经元?神经网络(深度学习)如何工作?

学习-吴恩达《AI for everyone》2019 神经网络的魔法就在于 你并不需要知道神经网络 里面到底在干嘛, 你只需要 给它很多像A这样的图片数据 和像B这样的正确人脸的身份标签, 然后这个学习算法 自己就会弄清楚这中间的 每一个神经元需要计算什么!

政安晨:【完全零基础】认知人工智能(五)【超级简单】的【机器学习神经网络】 —— 数据训练

作为这个系列文章的最后一篇,咱们先回顾一下建立神经网络的整体步骤,以实现对机器学习神经网络的整体认知。数据训练部分的目的是通过大量的数据和反向传播算法来调整网络参数,使得网络能够学习到输入数据的特征和模式,从而实现对未知数据的准确预测或分类。在人工智能领域中,机器学习神经网络的数据训练部分是指通过将

智能笔墨:AI大模型引领多领域创作与全球交流【文末送书-26】

智能笔墨:AI大模型引领多领域创作与全球交流【文末送书-26】随着人工智能(AI)技术的迅猛发展,AI大模型如GPT-3.5等正在改变着传统写作的面貌,为创作者们提供了高效、创新的写作工具。这些强大的语言模型不仅能够生成自然流畅的文本,还具备理解和学习的能力,从而在各个领域实现更为智能化的写作过程。

Sora:开启视频创作未来的AI革命。Chatgpt

在人工智能技术迅猛发展的今天,OpenAI推出的AI视频模型Sora代表了视频创作领域的一次重大革新。Sora凭借其卓越的性能和前瞻性技术,不仅提高了视频制作的效率和质量,还开辟了全新的创作可能性。本文深入探讨了Sora的核心技术特点,包括其先进的神经网络结构、数据处理能力和学习算法,展现了它在视频

登录可以使用的更多功能哦! 登录
作者榜
...
资讯小助手

资讯同步

...
内容小助手

文章同步

...
Deephub

公众号:deephub-imba

...
奕凯

公众号:奕凯的技术栈