深度学习必备知识——模型数据集Yolo与Voc格式文件相互转化

在深度学习中,第一步要做的往往就是处理数据集,尤其是学习百度飞桨PaddlePaddle的小伙伴,数据集经常要用Voc格式的,比如性能突出的ppyolo等模型。所以学会数据集转化的本领是十分必要的。这篇博客就带你一起进行Yolo与Voc格式的相互转化,附详细代码!

so-vits-svc3.0 中文详细安装、训练、推理使用教程

so-vits-svc 中文详细安装、训练、推理使用步骤

Pytorch深度学习实战3-5:详解计算图与自动微分机(附实例)

本文详细介绍Pytorch中计算图的底层原理,讲解基于计算图的前向传播和反向传播,Pytorch自动微分原理以及梯度缓存、参数冻结等技巧

Transformer在计算机视觉中的应用-VIT、TNT模型

Transformer在计算机视觉中的应用-VIT算法

用chatgpt写insar地质灾害的论文,重复率只有1.8%,chatgpt4.0写论文不是梦

例如,长江三峡地区位于构造活跃带,地震活动频繁,同时地区地质构造多样,加之大规模水库建设和人类活动等因素,导致了地下水位变化、土体物理力学性质变化等,加剧了地质灾害的风险。近年来,多个地区的科学家们使用InSAR技术监测了不同规模的地面沉降,如华北平原、广东沿海、长江三角洲等地,以实现对地质灾害的实

占有统治地位的Transformer究竟是什么

一篇文章弄懂Transformer+项目训练。

注意力机制详解系列(三):空间注意力机制

本篇为注意力机制系列第三篇,主要介绍注意力机制中的空间注意力机制,着重详解DCN、Non-local、ViT、DETR等模型,下一篇将对混合注意力机制和时域注意力机制进行讲解。

对标ChatGPT的开源中文方案

下面我会介绍一些对标ChatGPT的中文开源方案,代码地址也列在每个项目的介绍最上面,希望这些方案能够对大家有所帮助!

【达摩院OpenVI】老片图像上色,一键开源体验

本文介绍开源图像上色一键体验,它是指对黑白图像添加色彩,使其变成彩色图像。更具体的说,我们常见的彩色图像通常是三通道图像,而黑白图像只有一个灰度通道,因此,图像上色旨在利用单一灰度通道恢复图像的两个彩色通道。随着摄影技术的演进,彩色照片在现在已经非常普及,但仍然有大量历史黑白照片遗留。图像上色可以对

基于深度学习的鸟类检测识别系统(含UI界面,Python代码)

鸟类识别是深度学习和机器视觉领域的一个热门应用,本文详细介绍基于YOLOv5的鸟类检测识别系统,在介绍算法原理的同时,给出Python实现代码以及PyQt的UI界面。在界面中可选择各种鸟类图片、视频以及开启摄像头进行检测识别;可通过UI界面选择文件,切换标记识别目标,支持切换模型,支持用户登录注册界

Python跳动的爱心

Python跳动的爱心代码。

使用Pytorch实现对比学习SimCLR 进行自监督预训练

SimCLR(Simple Framework for Contrastive Learning of Representations)是一种学习图像表示的自监督技术。SimCLR 已被证明在各种图像分类基准上优于最先进的无监督学习方法。

如何用AI制作电影级镜头?Midjourney v5体验教程(附prompts大全)

在ChatGPT4.0发布后,由Midjourney研究实验室紧随其后发布了Midjourney v5版本,在镜头语言、光影渲染等方面更自然。本文带大家体验Midjourney v5,并附prompts大全

【Pytorch】利用PyTorch实现图像识别

利用PyTorch实现图像识别的相关知识

AI 绘画 stable diffusion webui 常见模型汇总及简介

主要是记录索引一下常见的 AI 绘画作画模型,方便自己用。主要收集 stable diffusion webui 用大模型(ckpt与safetensors)包括了常见的模型比如的Waifu Diffusion、anything、f222、basil mix、urpm 、chillout mix等模

基于pytorch+Resnet101加GPT搭建AI玩王者荣耀

在图中设定下,Android指针坐标(X,Y)对应minitouch坐标(1080-Y,X):即在点按屏幕中某点时,安卓调试显示的(X,Y)在.json文件中的坐标应为(1080-Y,X)。'check_json.py'为调试和生成本地.json按键映射文件的脚本。此外,'处理训练数据5.py'中:

Python深度学习实战:人脸关键点(15点)检测pytorch实现

人脸关键点检测即对人类面部若干个点位置进行检测,可以通过这些点的变化来实现许多功能,该技术可以应用到很多领域,例如捕捉人脸的关键点,然后驱动动画人物做相同的面部表情;识别人脸的面部表情,让机器能够察言观色等等。

Half-UNet:用于医学图像分割的简化U-Net架构

Half-UNet简化了编码器和解码器,还使用了Ghost模块(GhostNet)。并重新设计的体系结构,把通道数进行统一。

[ 注意力机制 ] 经典网络模型1——SENet 详解与复现

[ 注意力机制 ] 经典网络模型1——SENet 详解与复现1、Squeeze-and-Excitation Networks2、Squeeze-and-Excitation block3、SENet 详解4、SENet 复现Squeeze-and-Excitation Networks简称 SEN

Prompt Learning 简介

• Prompt Learning 可以将所有的任务归一化预训练语言模型的任务• 避免了预训练和fine-tuning 之间的gap,几乎所有 NLP 任务都可以直接使用,不需要训练数据。• 在少样本的数据集上,能取得超过fine-tuning的效果。• 使得所有的任务在方法上变得一致。

登录可以使用的更多功能哦! 登录
作者榜
...
资讯小助手

资讯同步

...
内容小助手

文章同步

...
Deephub

公众号:deephub-imba

...
奕凯

公众号:奕凯的技术栈