0


Opencv实现停车位识别

文章目录

1.实现的思路

(1)首先使用一个处理画框的程序,将图片中的有车和无车的停车位给画出来,并且保存坐标(如果画错了,将鼠标移至要删除的框中,右击鼠标,即可删除);

#定义回调函数
def mouseClick(events,x,y,flags,params):
    #按下鼠标左键,将点击的坐标(x,y)保存到position列表中
    if(events&cv2.EVENT_LBUTTONDOWN==cv2.EVENT_LBUTTONDOWN):
        position.append((x,y))
    #按下鼠标右键时,移除选中的框
    if(events&cv2.EVENT_RBUTTONDOWN==cv2.EVENT_RBUTTONDOWN):for i,pos in enumerate(position):(x1,y1)=pos
            if(x1<x<x1+img_width and y1<y<y1+img_height):
                position.pop(i)

在这里插入图片描述
(2)画好之后,关闭窗口,即可看到已经保存好坐标的文件,下次再运行程序时,不用再画框;程序会读出当前文件,将之前保存好的坐标加载出画出框。

#首先查看文件是否已经包含了CarParkPos文件
try:
    with open('CarParkPos','rb') as fp:
        position=pickle.load(fp)
except:
    # 存储所有停车位的坐标列表
    position=[]

在这里插入图片描述
(3)主程序的思路
将摄像头读取的图片进行处理
Opencv基础知识点:
https://blog.csdn.net/Keep_Trying_Go/article/details/125351256
高斯去噪:
https://mydreamambitious.blog.csdn.net/article/details/125203273
局部二值化:
https://mydreamambitious.blog.csdn.net/article/details/125249121
中值滤波:
https://mydreamambitious.blog.csdn.net/article/details/125204641
Opencv中获取卷积核:
https://mydreamambitious.blog.csdn.net/article/details/125265838
腐蚀操作:
https://mydreamambitious.blog.csdn.net/article/details/125265431

#转换为灰度图
    gray=cv2.cvtColor(src=frame,code=cv2.COLOR_BGR2GRAY)
    #高斯去噪
    gauss=cv2.GaussianBlur(src=gray,ksize=(3,3),sigmaX=0)
    #图像二值化处理
    thresh=cv2.adaptiveThreshold(src=gauss,maxValue=255,adaptiveMethod=cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
            thresholdType=cv2.THRESH_BINARY_INV,blockSize=21,C=16)
    # 中值滤波操作
    median=cv2.medianBlur(src=thresh,ksize=3)
    #腐蚀操作
    dilate=cv2.dilate(src=median,kernel=kernel,iterations=1)
for pos in position:(x,y)=pos
        mask=dilate[y:y+img_height,x:x+img_width]#cv2.imshow(str(x*y),mask)
        #返回灰度值不为0的像素数,可用来判断图像是否全黑。
        count=cv2.countNonZero(mask)
        #当计算的count低于800,表示是一个空位
        if count<800:
            countBlackCar+=1
            color=(0,255,0)
            thickness=3else:
            color=(0,0,255)
            thickness=2

        cv2.rectangle(img=frame, pt1=(pos[0], pos[1]),
                      pt2=(pos[0]+ img_width, pos[1]+ img_height),
                      color=color, thickness=thickness)
        cvzone.putTextRect(img=frame, text=str(count), pos=(x +3, y + img_height -5),
                           scale=0.8, thickness=1, offset=0,colorR=color)

参考视频教程:https://www.bilibili.com/video/BV14Z4y1Q7au?t=3992.0**(建议看懂视频中的思路)**
注:代码不重要,主要是学会给出的链接中这位博主的思路。使用更加简单的方法解决问题,但是呢?这种方法我认为主要是为解决那种固定摄像头拍摄的停车位,因为我们标注的坐标是固定的(但是可以利用深度学习提取有车和无车的特征进行识别,定位的可以使用Opencv来解决)。


2.整体代码实战

在这里插入图片描述

(1)ParkingSpacePicker.py

importosimportcv2importpickle

#首先查看文件是否已经包含了CarParkPos文件
try:
    with open('CarParkPos','rb') as fp:
        position=pickle.load(fp)
except:
    # 存储所有停车位的坐标列表
    position=[]

#停车位的高宽
img_width,img_height=47,88
#定义回调函数
def mouseClick(events,x,y,flags,params):
    #按下鼠标左键,将点击的坐标(x,y)保存到position列表中
    if(events&cv2.EVENT_LBUTTONDOWN==cv2.EVENT_LBUTTONDOWN):
        position.append((x,y))
    #按下鼠标右键时,移除选中的框
    if(events&cv2.EVENT_RBUTTONDOWN==cv2.EVENT_RBUTTONDOWN):for i,pos in enumerate(position):(x1,y1)=pos
            if(x1<x<x1+img_width and y1<y<y1+img_height):
                position.pop(i)

    with open('CarParkPos','wb') as fp:
        pickle.dump(position,fp)while True:
    img=cv2.imread('images/packing.png')for pos in position:
        cv2.rectangle(img=img,pt1=(pos[0],pos[1]),
                      pt2=(pos[0]+img_width,pos[1]+img_height),
                      color=(0,255,0),thickness=2)

    cv2.imshow('Packing',img)
    #设置鼠标事件
    cv2.setMouseCallback('Packing',mouseClick)
    key=cv2.waitKey(1)if key==27:break

cv2.destroyAllWindows()if __name__ =='__main__':print('Pycharm')

(2)main.py

importosimportcv2importpickleimportcvzone

with open('CarParkPos','rb') as fp:
    position = pickle.load(fp)

#停车位的高宽
img_width,img_height=47,88

cap=cv2.VideoCapture('video/packing-3.mp4')

def checkParkingSpace(dilate):
    countBlackCar=0for pos in position:(x,y)=pos
        mask=dilate[y:y+img_height,x:x+img_width]#cv2.imshow(str(x*y),mask)
        #返回灰度值不为0的像素数,可用来判断图像是否全黑。
        count=cv2.countNonZero(mask)
        #当计算的count低于800,表示是一个空位
        if count<800:
            countBlackCar+=1
            color=(0,255,0)
            thickness=3else:
            color=(0,0,255)
            thickness=2

        cv2.rectangle(img=frame, pt1=(pos[0], pos[1]),
                      pt2=(pos[0]+ img_width, pos[1]+ img_height),
                      color=color, thickness=thickness)
        cvzone.putTextRect(img=frame, text=str(count), pos=(x +3, y + img_height -5),
                           scale=0.8, thickness=1, offset=0,colorR=color)return countBlackCar

#获取卷积核
kernel=cv2.getStructuringElement(shape=cv2.MORPH_RECT,ksize=(3,3))while cap.isOpened():
    #循环播放视频文件
    if cap.get(cv2.CAP_PROP_POS_FRAMES)==cap.get(cv2.CAP_PROP_FRAME_COUNT):
        cap.set(cv2.CAP_PROP_POS_FRAMES,0)

    ret,frame=cap.read()#frame=cv2.resize(src=frame,dsize=(750,600))
    height,width,channel=frame.shape
    ifnot ret:break

    #转换为灰度图
    gray=cv2.cvtColor(src=frame,code=cv2.COLOR_BGR2GRAY)
    #高斯去噪
    gauss=cv2.GaussianBlur(src=gray,ksize=(3,3),sigmaX=0)
    #图像二值化处理
    thresh=cv2.adaptiveThreshold(src=gauss,maxValue=255,adaptiveMethod=cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
            thresholdType=cv2.THRESH_BINARY_INV,blockSize=21,C=16)
    # 中值滤波操作
    median=cv2.medianBlur(src=thresh,ksize=3)
    #腐蚀操作
    dilate=cv2.dilate(src=median,kernel=kernel,iterations=1)

    cntCar=checkParkingSpace(dilate)

    cvzone.putTextRect(img=frame,text="BlackPosition: "+str(cntCar),
                       pos=(20,height-80),scale=1.0,thickness=2)
    cv2.imshow('img',frame)#cv2.imshow('thresh',thresh)#cv2.imshow('median',median)#cv2.imshow('dilate',dilate)
    key=cv2.waitKey(30)if key==27:break
cv2.destroyAllWindows()if __name__ =='__main__':print('Pycharm')

(3)视频效果

停车位识别演示视频

注:视频自己做的比较差,建议读者最好自己尝试实现这个思路。


3.停车位视频下载

https://699pic.com/movie/295567.html


本文转载自: https://blog.csdn.net/Keep_Trying_Go/article/details/125572539
版权归原作者 Keep_Trying_Go 所有, 如有侵权,请联系我们删除。

“Opencv实现停车位识别”的评论:

还没有评论