0


OpenCV自学笔记九:阈值处理

  1. 阈值处理(Thresholding):阈值处理是一种图像分割的方法,它根据像素灰度值与设定的阈值进行比较,将像素分为两个类别(例如黑白、前景背景等)。阈值处理可以用于目标检测、图像增强等应用。在OpenCV中,常用的阈值处理函数是cv2.threshold()

  2. threshold函数:cv2.threshold(src, thresh, maxval, type[, dst])是OpenCV中的阈值处理函数。它接受源图像、设定的阈值、最大值、阈值类型以及可选参数目标图像作为输入,并返回两个结果:阈值和处理后的图像。

  3. 自适应阈值处理(Adaptive Thresholding):自适应阈值处理是根据图像的局部特征,自动确定每个像素点的阈值。不同于固定阈值处理,自适应阈值处理能够在不同光照条件下得到更好的效果。在OpenCV中,可以通过cv2.adaptiveThreshold()函数实现自适应阈值处理。

  4. Otsu处理(Otsu's Thresholding):Otsu处理是一种自动确定二值化阈值的方法,它通过最小化类间方差或最大化类内方差的方式,找到最佳的阈值。Otsu处理可以在某些情况下得到更好的二值化结果。在OpenCV中,可以使用cv2.threshold()函数并将阈值类型设置为cv2.THRESH_OTSU来进行Otsu处理。

示例代码:

import cv2

# 读取图像并转为灰度图

image = cv2.imread('input.jpg')

gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# 使用固定阈值处理

_, binary_image = cv2.threshold(gray_image, 127, 255, cv2.THRESH_BINARY)

# 使用自适应阈值处理

adaptive_image = cv2.adaptiveThreshold(gray_image, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 11, 2)

# 使用Otsu处理

_, otsu_image = cv2.threshold(gray_image, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)

# 显示图像

cv2.imshow('Binary Image', binary_image)

cv2.imshow('Adaptive Threshold Image', adaptive_image)

cv2.imshow('Otsu Image', otsu_image)

cv2.waitKey(0)

cv2.destroyAllWindows()

以上示例中,首先将彩色图像转换为灰度图像。然后使用固定阈值将灰度图像二值化,得到二值图像(binary_image)。接着使用自适应阈值处理函数cv2.adaptiveThreshold()对灰度图像进行自适应阈值处理,得到处理后的图像(adaptive_image)。最后使用Otsu处理方法将灰度图像二值化,得到Otsu处理后的图像(otsu_image)。可以根据具体需求调整阈值和参数以获得不同的阈值处理效果。


本文转载自: https://blog.csdn.net/m0_71721954/article/details/133124086
版权归原作者 ironmao 所有, 如有侵权,请联系我们删除。

“OpenCV自学笔记九:阈值处理”的评论:

还没有评论