需要源码请点赞关注收藏后评论区留言私信~~~
人脸蕴含的信息量巨大,不管是青春还是年少,还是老年沧桑,都能体现出来,不过从人脸估算年龄估算年龄全凭经验,毕竟计算机无法根据固定框架判断年龄,那么计算机的经验从何而来呢?当然是要人类把经验传授给它,这种经验在机器学习领域称作模型,通过海量的原始样本训出结果模型,然后由计算机依据模型执行辨别操作
一、根据人脸估算性别和年龄
在App工程中使用年龄模型和性别模型需要按照以下步骤处理
(1)导入年龄模型文件,以及性别模型文件。
(2)把assets目录下的模型资源复制到存储卡。
(3)在代码中初始化年龄模型和性别模型。
(4)根据模型网络对人脸矩阵分别猜测年龄和性别。
但是根据这样的方法猜测出来的年龄和性别都带有中文字符,虽然OpenCV的imgproc工具提供了putText方法,但是该方法还不支持往图像上写中文,若调用putText方法写中文的话只会看到一堆乱码,为了在图像上看到年龄和性别,可以采取以下两种方法
1:修改OpenCV的C语言源码,在putText函数旁边增加putTextZH函数,新函数专门用来添加中文字符,同时还要修改sdk的Imgproc.java 补充native类型的putTextZH方法声明
2:第一种方法设计C代码修改与so库编译,操作十分麻烦,为此考虑先将OpenCV的mat结构转换为位图对象,再借助画布往位图上描绘文字
二、效果展示
先上一张神仙姐姐刘亦菲的照片
可见性别判断的非常准确 但是年龄只能给出一个区间 有待改进
这个就有点抽象了 年轻时候的贝克汉姆竟然识别到51-65这个区间肯定是不合理的
马儿的判断还是比较准确的
梅西判断的也还比较准确
三、代码
部分代码如下 需要源码请点赞关注收藏后评论区留言私信~~~
package com.example.face;
import android.content.Context;
import android.content.Intent;
import android.graphics.Bitmap;
import android.graphics.PointF;
import android.net.Uri;
import android.os.Bundle;
import android.os.Environment;
import android.util.Log;
import android.widget.ImageView;
import androidx.appcompat.app.AppCompatActivity;
import com.example.face.util.BitmapUtil;
import com.example.face.util.FaceUtil;
import com.example.face.util.FaceUtil.FaceText;
import org.opencv.android.BaseLoaderCallback;
import org.opencv.android.LoaderCallbackInterface;
import org.opencv.android.OpenCVLoader;
import org.opencv.android.Utils;
import org.opencv.core.Core;
import org.opencv.core.Mat;
import org.opencv.core.MatOfRect;
import org.opencv.core.Rect;
import org.opencv.core.Scalar;
import org.opencv.core.Size;
import org.opencv.dnn.Dnn;
import org.opencv.dnn.Net;
import org.opencv.imgproc.Imgproc;
import org.opencv.objdetect.CascadeClassifier;
import java.io.File;
import java.io.FileOutputStream;
import java.io.InputStream;
import java.util.ArrayList;
import java.util.List;
public class GuessAgeActivity extends AppCompatActivity {
private final static String TAG = "GuessAgeActivity";
private int CHOOSE_CODE = 3; // 只在相册挑选图片的请求码
private ImageView iv_face; // 声明一个图像视图对象
private CascadeClassifier mJavaDetector; // OpenCV的人脸检测器
private Net mAgeNet, mGenderNet; // 年龄模型,性别模型
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_guess_age);
iv_face = findViewById(R.id.iv_face);
findViewById(R.id.btn_choose).setOnClickListener(v -> {
// 创建一个内容获取动作的意图(准备跳到系统相册)
Intent albumIntent = new Intent(Intent.ACTION_GET_CONTENT);
albumIntent.putExtra(Intent.EXTRA_ALLOW_MULTIPLE, false); // 是否允许多选
albumIntent.setType("image/*"); // 类型为图像
startActivityForResult(albumIntent, CHOOSE_CODE); // 打开系统相册
});
}
@Override
protected void onActivityResult(int requestCode, int resultCode, Intent intent) {
super.onActivityResult(requestCode, resultCode, intent);
if (resultCode == RESULT_OK && requestCode == CHOOSE_CODE) { // 从相册返回
if (intent.getData() != null) { // 从相册选择一张照片
Uri uri = intent.getData(); // 获得已选择照片的路径对象
// 根据指定图片的uri,获得自动缩小后的位图对象
Bitmap bitmap = BitmapUtil.getAutoZoomImage(this, uri);
guessAgeAndSex(bitmap); // 根据人脸猜测年龄和性别
}
}
}
// 根据人脸猜测年龄和性别
private void guessAgeAndSex(Bitmap orig) {
Mat rgba = new Mat();
Utils.bitmapToMat(orig, rgba); // 把位图对象转为Mat结构
Mat gray = new Mat();
Imgproc.cvtColor(rgba, gray, Imgproc.COLOR_RGB2GRAY); // 全彩矩阵转灰度矩阵
Mat three = new Mat();
Imgproc.cvtColor(rgba, three, Imgproc.COLOR_RGBA2RGB); // 四通道转三通道
// 下面识别人脸并预测年龄和性别
MatOfRect faces = new MatOfRect();
int height = gray.rows();
int absoluteFaceSize = 0;
if (Math.round(height * 0.2f) > 0) {
absoluteFaceSize = Math.round(height * 0.2f);
}
if (mJavaDetector != null) { // 检测器开始识别人脸
mJavaDetector.detectMultiScale(gray, faces, 1.1, 2, 2,
new Size(absoluteFaceSize, absoluteFaceSize), new Size());
}
Rect[] faceArray = faces.toArray();
List<FaceText> textList = new ArrayList<>();
int lineWidth = Math.max(orig.getWidth()/600 + 1, orig.getHeight()/600 + 1);
for (Rect rect : faceArray) { // 给找到的人脸标上相框
String ageText = predictAge(mAgeNet, three.submat(rect)); // 猜测年龄
String genderText = predictGender(mGenderNet, three.submat(rect)); // 猜测性别
Scalar scalar = new Scalar(0, 255, 0, 255);
Imgproc.rectangle(rgba, rect.tl(), rect.br(), scalar, lineWidth);
PointF pos = new PointF((float) rect.tl().x / rgba.width(), (float) rect.tl().y / rgba.height());
textList.add(new FaceText(pos, genderText + "," + ageText));
//OpenCV的putText方法写中文会乱码,目前OpenCV的Java开发包还不支持中文
//Imgproc.putText(rgba, ageText, rect.tl(), FONT_HERSHEY_PLAIN, 1.2, new Scalar(0, 0, 255), 1);
}
Bitmap mark = Bitmap.createBitmap(orig.getWidth(), orig.getHeight(), Bitmap.Config.ARGB_8888);
Utils.matToBitmap(rgba, mark); // 把Mat结构转为位图对象
mark = FaceUtil.drawTextList(this, mark, textList); // 往位图添加多个文字
iv_face.setImageBitmap(mark);
}
// 获取年龄列表
private List<String> ageLabels() {
List<String> ageList = new ArrayList<>();
ageList.add("0 - 3");
ageList.add("4 - 7");
ageList.add("8 - 14");
ageList.add("15 - 24");
ageList.add("25 - 37");
ageList.add("38 - 50");
ageList.add("51 - 65");
ageList.add("66 -");
return ageList;
}
// 根据模型网络分析预测图像矩阵
private Core.MinMaxLocResult predictResult(Net modelNet, Mat imageMat) {
// 输入图像矩阵
Mat blob = Dnn.blobFromImage(imageMat, 1.0, new Size(227, 227));
modelNet.setInput(blob, "data");
Mat prob = modelNet.forward("prob"); // 模型网络开始预测
Mat probMat = prob.reshape(1, 1);
return Core.minMaxLoc(probMat);
}
// 猜测年龄
private String predictAge(Net modelNet, Mat imageMat) {
Core.MinMaxLocResult result = predictResult(modelNet, imageMat);
return ageLabels().get((int) result.maxLoc.x);
}
// 猜测性别
private String predictGender(Net modelNet, Mat imageMat) {
Core.MinMaxLocResult result = predictResult(modelNet, imageMat);
//return ((int) result.maxLoc.x)==1 ? "男" : "女";
return ((int) result.maxLoc.x)==1 ? "女" : "男";
}
@Override
protected void onResume() {
super.onResume();
if (!OpenCVLoader.initDebug()) {
Log.d(TAG, "Internal OpenCV library not found. Using OpenCV Manager for initialization");
OpenCVLoader.initAsync(OpenCVLoader.OPENCV_VERSION_3_0_0, this, mLoaderCallback);
} else {
Log.d(TAG, "OpenCV library found inside package. Using it!");
mLoaderCallback.onManagerConnected(LoaderCallbackInterface.SUCCESS);
}
}
private BaseLoaderCallback mLoaderCallback = new BaseLoaderCallback(this) {
@Override
public void onManagerConnected(int status) {
if (status == LoaderCallbackInterface.SUCCESS) {
new Thread(() -> importModel()).start(); // 启动分线程导入年龄模型和性别模型
Log.d(TAG, "OpenCV loaded successfully");
// 在OpenCV初始化完成后加载so库
System.loadLibrary("detection_based_tracker");
File cascadeDir = getDir("cascade", Context.MODE_PRIVATE);
File cascadeFile = new File(cascadeDir, "lbpcascade_frontalface.xml");
// 从应用程序资源加载级联文件
try (InputStream is = getResources().openRawResource(R.raw.lbpcascade_frontalface);
FileOutputStream os = new FileOutputStream(cascadeFile)) {
byte[] buffer = new byte[4096];
int bytesRead;
while ((bytesRead = is.read(buffer)) != -1) {
os.write(buffer, 0, bytesRead);
}
} catch (Exception e) {
e.printStackTrace();
}
// 根据级联文件创建OpenCV的人脸检测器
mJavaDetector = new CascadeClassifier(cascadeFile.getAbsolutePath());
if (mJavaDetector.empty()) {
Log.d(TAG, "Failed to load cascade classifier");
mJavaDetector = null;
} else {
Log.d(TAG, "Loaded cascade classifier from " + cascadeFile.getAbsolutePath());
}
cascadeDir.delete();
} else{
super.onManagerConnected(status);
}
}
};
// 导入年龄模型和性别模型
private void importModel() {
String prePath = getExternalFilesDir(Environment.DIRECTORY_DOWNLOADS).toString() + "/";
String age_model = prePath + "age_net.caffemodel";
String age_text = prePath + "age_deploy.prototxt";
String gender_model = prePath + "gender_net.caffemodel";
String gender_text = prePath + "gender_deploy.prototxt";
mAgeNet = Dnn.readNetFromCaffe(age_text, age_model);
mGenderNet = Dnn.readNetFromCaffe(gender_text, gender_model);
}
}
创作不易 觉得有帮助请点赞关注收藏~~~
版权归原作者 showswoller 所有, 如有侵权,请联系我们删除。