高斯混合模型:GMM和期望最大化算法的理论和代码实现

高斯混合模型(gmm)是将数据表示为高斯(正态)分布的混合的统计模型。这些模型可用于识别数据集中的组,并捕获数据分布的复杂、多模态结构。

使用pytorch实现高斯混合模型分类器

本文是一个利用Pytorch构建高斯混合模型分类器的尝试。我们将从头开始构建高斯混合模型(GMM)。这样可以对高斯混合模型有一个最基本的理解,本文不会涉及数学,因为我们在以前的文章中进行过很详细的介绍。

使用高斯混合模型拆分多模态分布

本文介绍如何使用高斯混合模型将一维多模态分布拆分为多个分布。

机器学习笔记 - 什么是高斯混合模型(GMM)?

高斯混合模型 (GMM) 是一种机器学习算法。它们用于根据概率分布将数据分类为不同的类别。高斯混合模型可用于许多不同的领域,包括金融、营销等等!这里要对高斯混合模型进行介绍以及真实世界的示例、它们的作用以及何时应该使用GMM。高斯混合模型 (GMM) 是一个概率概念,用于对真实世界的数据集进行建模。

机器学习笔记 - 什么是高斯混合模型(GMM)?

高斯混合模型 (GMM) 是一种机器学习算法。它们用于根据概率分布将数据分类为不同的类别。高斯混合模型可用于许多不同的领域,包括金融、营销等等!这里要对高斯混合模型进行介绍以及真实世界的示例、它们的作用以及何时应该使用GMM。高斯混合模型 (GMM) 是一个概率概念,用于对真实世界的数据集进行建模。

登录可以使用的更多功能哦! 登录
作者榜
...
资讯小助手

资讯同步

...
内容小助手

文章同步

...
Deephub

公众号:deephub-imba

...
奕凯

公众号:奕凯的技术栈