人工智能学习(十):什么是贝叶斯网络——伯克利版
模型描述了世界的(一部分)运作方式。模型总是简化的:可能没有考虑到每个变量,不关心或者无法为其建模。可能没有考虑到变量之间的所有相互作用,无法发现或者代价昂贵。所有的模型都是错的;但有些是有用的。在<人工智能学习(七):概率>中,我们主要谈论了动作,选择动作,动作序列,链式推理。但是在这一篇博文,我
高斯朴素贝叶斯分类的原理解释和手写代码实现
朴素贝叶斯假设每个参数(也称为特征或预测变量)具有预测输出变量的独立能力。所有参数的预测组合是最终预测,它返回因变量被分类到每个组中的概率,最后的分类被分配给概率较高的分组(类)。