
用傅里叶变换解码时间序列:从频域视角解析季节性模式
传统上,识别季节性模式往往依赖于数据的**可视化分析**。但是我们可以使用**傅里叶变换**以及**周期图**(Periodogram)这一强大工具,用一种更系统的方法来解决这个问题。

数据降维技术研究:Karhunen-Loève展开与快速傅里叶变换的理论基础及应用
在现代科学计算和数据分析领域,数据降维与压缩技术对于处理高维数据具有重要意义。

结合傅里叶变换和传统特征提取方法,通过XGBoost检测计算机生成图像
我们这里要介绍的很多过程是特征工程而不是分类。这个过程包括几个步骤,看起来很复杂,但实际上他们的核心很简单。

傅里叶变换算法和Python代码实现
本篇文章我们将使用Python来实现一个连续函数的傅立叶变换。

时间序列去趋势化和傅里叶变换
在计算傅里叶变换之前对信号去趋势是一种常见的做法,特别是在处理时间序列时。在这篇文章中,我将从数学和视觉上展示信号去趋势是如何影响傅里叶变换的。
图像处理之图像傅里叶变换
傅里叶变换是在以时间为自变量的“信号”与频率为自变量的“频谱”函数之间的某域研究中较复杂的问题在频域中变得简单起来,从而简化其分析过程;当自变量“时间”或“频率”为连续形式和离散形式的不同组合时,就可以形成各种不同的傅里叶变换对,即“信号”与“频谱”的对应关系。即傅里叶变换的物理意义是将图像的灰度分

神经网络与傅立叶变换有关系吗?
傅里叶变换可以视为一种有助于逼近其他函数的函数,神经网络被也认为是一种函数逼近技术或通用函数逼近技术。 本文将讨论傅里叶变换,以及如何将其用于深度学习领域。