【Python】Python寻找多维数组(numpy.array)中最大值的位置(行和列)
最近需要从热力图中找出关键点的坐标,也就是极大值的行和列。搜寻了网上的一些方法,在这里总结一下。使用numpy进行多维数组中最大值的行和列搜寻非常的灵活,有以下几种方法可供参考。二维数组方法一:np.max()函数 + np.where()函数如下图所示,x是一个 3×3 的二维np.array,首
窗函数的介绍以及画出常见窗函数(汉宁窗,矩形窗,汉明窗,布莱克曼窗)的时域图和频谱图
窗函数的介绍以及画出常见窗函数(汉宁窗,矩形窗,汉明窗,布莱克曼窗)的时域图和频谱图
openCV 第四篇 角点检测、图像特征、图片拼接
openCV第四篇
MaxPool2d详解--在数组和图像中的应用
选择卷积核覆盖时的最大值,ceil_mode控制卷积核超出原始数据后是否进行保留函数:参数要求代码:结果:代码:结果:代码:结果:
[总结] 半监督学习方法: 一致性正则化(Consistency Regularization)
基于平滑假设和聚类假设, 具有不同标签的数据点在低密度区域分离, 并且相似的数据点具有相似的输出. 那么, 如果对一个未标记的数据应用实际的扰动, 其预测结果不应该发生显著变化, 也就是输出具有一致性.
【零基础玩转BLDC系列】基于反电动势过零检测法的无刷直流电机控制原理
零基础玩转BLDC系列之基于反电动势过零检测法的无刷直流电机控制原理。详细介绍了无刷直流电机无位置转动原理,以及基于反电动势过零检测法的无刷直流电机控制原理。
相机模型、相机标定及基于yolov5的单目测距实现
相机模型、相机标定及基于yolov5的单目测距实现1 前言2 相机模型及单目测距原理3 相机参数标定3.1 内参矩阵3.2 内参标定1 前言在摄像头成像过程中,物体反射的光线通过摄像头的凸透镜打在成像器件上,形成一张图片。这是一个三维物体转换为二维图像的过程。在这个过程中,丢失了物体的深度信息,所以
CVPR 2022 | 最全25+主题方向、最新50篇GAN论文汇总
一顿午饭外卖,成为CV视觉前沿弄潮儿35个主题!ICCV 2021最全GAN论文汇总超110篇!CVPR 2021最全GAN论文梳理超100篇!CVPR 2020最全GAN论文梳理在最新的视觉顶会CVPR2022会议中,涌现出了大量基于生成对抗网络GAN的论文,广泛应用于各类视觉任务;下述论文已分类
WGAN(Wasserstein GAN)看这一篇就够啦,WGAN论文解读
WGAN本作引入了Wasserstein距离,由于它相对KL散度与JS 散度具有优越的平滑特性,理论上可以解决梯度消失问题。接 着通过数学变换将Wasserstein距离写成可求解的形式,利用 一个参数数值范围受限的判别器神经网络来较大化这个形式, 就可以近似Wasserstein距离。WGAN既解
rk3588使用npu进行模型转换和推理,加速AI应用落地
本来想使用tensorrt进行加速推理,但是前提需要cuda,rk的板子上都是Arm的手机gpu,没有Nvidia的cuda,所以这条路行不通。使用该NPU需要下载RKNN SDK,RKNN SDK 为带有 NPU 的RK3588S/RK3588 芯片平台提供编程接口,能够帮助用户部署使用 RKNN
神经网络算法基本原理及其实现
目录背景知识人工神经元模型激活函数网络结构工作状态学习方式BP算法原理算法实现(MATLAB)背景知识在我们人体内的神经元的基本结构,相信大家并不陌生,看完下面这张图,相信大家都能懂什么是人工神经网络?人工神经网络是具有适应性的简单神经元组成的广泛并互连的网络,它的组织能够模拟生物神经系统对真实世界
VMware ESXi安装NVIDIA GPU显卡硬件驱动和配置vGPU
一、驱动软件准备:从nvidia网站下载驱动,注意,和普通显卡下载驱动地址不同。按照ESXi对应版本不同下载不同的安装包。安装包内含ESXi主机驱动和虚拟机驱动。GPU显卡和物理服务器兼容查询:(重要:一定要查兼容,最近遇到一客户反馈安装驱动后运行nvidia-smi各种报错,最后查询是因为不兼容导
yolov5 训练结果解析
yolov5 训练结果解析在每次训练之后,都会在runs-train文件夹下出现一下文件,如下图:一:weights包含best.pt(做detect时用这个)和last.pt(最后一次训练模型)二:confusion1:混淆矩阵:①:混淆矩阵是对分类问题的预测结果的总结。使用计数值汇总正确和不正确
深度学习 简介
在介绍深度学习之前,我们先看下人工智能,机器学习和深度学习之间的关系:机器学习是实现人工智能的一种途径,深度学习是机器学习的一个子集,也就是说深度学习是实现机器学习的一种方法。与机器学习算法的主要区别如下图所示:传统机器学习算术依赖人工设计特征,并进行特征提取,而深度学习方法不需要人工,而是依赖算法
MAE详解
目录一、介绍二、网络结构1. encoder2. decoder3. LOSS三、实验全文参考:论文阅读笔记:Masked Autoencoders Are Scalable Vision Learners_塔_Tass的博客-CSDN博客masked autoencoders(MAE)是hekai
(Note)优化器Adam的学习率设置
从统计的角度看,Adam的自适应原理也是根据统计对梯度进行修正,但依然离不开前面设置的学习率。如果学习率设置的过大,则会导致模型发散,造成收敛较慢或陷入局部最小值点,因为过大的学习率会在优化过程中跳过最优解或次优解。同时神经网络的损失函数基本不是凸函数,而梯度下降法这些优化方法主要针对的是凸函数,所
QGC地面站使用教程
文章目录前言一、前言QGC地面站版本:一、
深度强化学习-TD3算法原理与代码
引言Twin Delayed Deep Deterministic policy gradient (TD3)是由Scott Fujimoto等人在Deep Deterministic Policy Gradient (DDPG)算法上改进得到的一种用于解决连续控制问题的在线(on-line)异策(
【人工智能】利用α-β搜索的博弈树算法编写一字棋游戏(QDU)
人工智能 α-β剪枝 博弈树 井字棋 青岛大学 QDU
计算机视觉教程3-1:全面详解图像边缘检测算法(附Python实战)
图像边缘检测算法种类繁多,本文系统梳理了图像边缘检测算法,并都附上了Python实战代码加深理解,便于二次开发