0


【AI知识点】近似最近邻搜索(ANN, Approximate Nearest Neighbor Search)

【AI论文解读】【AI知识点】【AI小项目】【AI战略思考】


近似最近邻搜索(ANN, Approximate Nearest Neighbor Search) 是一种用于高维数据检索的技术,目标是在给定查询的情况下,快速找到距离查询点最近的数据点,尽管结果可能并不完全精确。这种方法特别适用于高维数据(如图像、文本嵌入、用户行为特征等)的快速相似性搜索。

1. 最近邻搜索(NNS)

最近邻搜索(Nearest Neighbor Search, NNS) 是指在一个数据集中,给定一个查询点,找到与该点最接近的一个或多个点。对于低维数据,如二维或三维空间,可以通过简单的几何方法(如欧几里得距离)快速完成这种搜索。然而,当数据的维度非常高时(如深度学习中的嵌入向量通常有数百或上千维),标准的最近邻搜索方法变得非常耗时和计算复杂,因为搜索空间呈指数级增长。这种现象被称为维度灾难(curse of dimensionality)。

在这种高维数据场景中,近似最近邻搜索 提供了一种权衡方案,即通过舍弃一些精度,来显著提高搜索速度。


2. 为什么选择近似最近邻搜索(ANN)

在许多应用中,找到近似的最近邻已经足够,例如推荐系统、图像检索、文本相似性搜索等。这些场景更注重响应速度,而不一定要求找到完全最接近的点。通过允许近似的结果,ANN 方法在精度和速度之间取得平衡,适合大规模高维数据场景。

例子:

  • 图像检索:给定一张图像,用户希望找到与之相似的图像。尽管用户并不要求找到精确的最相似图像,但要求结果在几毫秒内返回,近似相似的图像检索结果已经可以满足用户需求。
  • 文本相似性搜索:对于一段输入文本,ANN可以快速找到语义上相似的其他文本,即使找到的文本并不是与输入完全相同。

3. 近似最近邻搜索的工作原理

ANN 的主要目标是通过优化算法结构,减少高维数据中查找最近邻的时间复杂度。典型的算法有以下几类:

a. 分区树方法

这些方法通过将数据集划分为不同的子区域,减少搜索空间。例如:

  • KD树(k-dimensional tree):将空间递归地划分为一系列超平面。KD树适合低维度数据,但在高维数据上效率较低。
  • 球树(Ball tree):用球体代替超平面来划分空间,适合处理高维数据。

尽管这些方法能加速查询,它们在维度非常高的情况下仍然不够高效,因此更多高维情况下使用的ANN方法会采用其他策略。

b. 局部敏感哈希(LSH, Locality Sensitive Hashing)

LSH 是一种非常流行的ANN方法,通过将相似的数据点散列到相同的桶(bucket)中,从而减少需要检查的点的数量。

工作原理:

  1. 哈希函数设计:LSH的核心是设计一组哈希函数,使得相似的数据点有较高概率被映射到相同的桶中,而不相似的点被映射到不同的桶。
  2. 哈希映射:将数据点通过这些哈希函数映射到多个桶中。
  3. 快速搜索:对于给定的查询点,只需要检查与查询点映射到同一桶的数据点,从而大幅减少比较的次数。

LSH特别适用于欧几里得距离和余弦相似度度量的高维数据。

c. 矢量量化(Vector Quantization, VQ)

矢量量化方法将数据集划分为有限数量的码字(centroids),然后仅在这些码字中进行最近邻搜索。常用的技术有产品量化(Product Quantization, PQ),它通过将高维空间分割成低维子空间并对每个子空间量化,从而大大减少搜索空间。

d. 图嵌入法(Graph-based Methods)

图嵌入法使用基于图的结构来加速ANN。通过构建数据点之间的邻居图,查询点可以通过遍历图找到接近的数据点。这类方法通常会用到近邻图(k-nearest neighbor graph, k-NN graph)小世界图,通过邻居节点的连接进行高效搜索。

常见的图嵌入法有:

  • 分层可导航小世界网络 HNSW(Hierarchical Navigable Small World):是一种基于小世界网络的高效算法,在现实中被广泛应用,如Facebook的FAISS库中。

4. 近似最近邻搜索的实际应用

a. 推荐系统

推荐系统中,经常需要快速找到与用户过去行为或喜好相似的其他产品、电影、音乐等。ANN算法能帮助系统在大规模用户数据中快速找到相似的用户或物品,从而提供个性化推荐。

b. 图像搜索

在图像搜索系统中,用户上传图片后,系统需要找到数据库中与之相似的图片。通过ANN,系统可以在海量图片数据中快速找到类似的图像,即使这些图像只是近似相似而不是完全相同。

c. 文本相似性搜索

在NLP任务中,ANN可以用于快速找到与输入文本相似的其他文本。例如,在一个FAQ系统中,用户输入问题时,系统通过ANN找到与该问题语义最接近的其他问题,从而提供匹配的答案。

d. 嵌入向量的快速检索

深度学习中的许多模型(如BERT、GPT等)将文本、图像等数据转化为高维嵌入向量。这些向量可以被用于表示数据的语义特征。在各种检索系统中,ANN算法可以高效地处理这些高维向量的相似性搜索,帮助系统快速找到最相关的数据。


5. 比喻解释

可以把ANN比作一个大图书馆的“快速查找系统”。假设图书馆里有百万本书,当你想找到与某本书内容相似的几本书时,如果你逐一阅读每本书来进行比较,会非常耗时。ANN的作用就像是图书馆里的一种快速分类系统,它把书本按照某些关键特征快速归类,然后通过这些特征的近似匹配,迅速帮你找到几本可能最接近的书。这种方法虽然不保证找到的书是100%最接近的,但可以在非常短的时间内给出足够好的结果。


6. 总结

近似最近邻搜索(ANN) 是一种为了提升高维数据相似性搜索效率的技术,它在牺牲一定精度的前提下,大大提升了搜索速度。它被广泛应用于推荐系统、图像检索、文本相似性搜索等实际场景。常见的ANN算法包括局部敏感哈希(LSH)、图嵌入法(如HNSW)、矢量量化(VQ)等,它们通过不同的方式优化搜索过程,解决了高维数据中的“维度灾难”问题。


本文转载自: https://blog.csdn.net/weixin_43221845/article/details/142696844
版权归原作者 AI完全体 所有, 如有侵权,请联系我们删除。

“【AI知识点】近似最近邻搜索(ANN, Approximate Nearest Neighbor Search)”的评论:

还没有评论