😊😊😊欢迎来到本博客😊😊😊
本次博客内容将继续讲解关于OpenCV的相关知识
🎉作者简介:⭐️⭐️⭐️目前计算机研究生在读。主要研究方向是人工智能和群智能算法方向。目前熟悉python网页爬虫、机器学习、计算机视觉(OpenCV)、群智能算法。然后正在学习深度学习的相关内容。以后可能会涉及到网络安全相关领域,毕竟这是每一个学习计算机的梦想嘛!
📝目前更新:🌟🌟🌟目前已经更新了关于网络爬虫的相关知识、机器学习的相关知识、目前正在更新计算机视觉-OpenCV的相关内容。
💛💛💛本文摘要💛💛💛
本文我们将继续讲解人工智能经典项目-答题卡试卷识别判卷的相关操作。文章目录
🌟写在前面
光学标记识别(简称OMR)是自动分析人工标记文档并解释其结果的过程。
我们之前在20年差不多都是人工去识别判卷,那个时候一个班级的试卷需要老师花费差不多1个小时才可以判完。效率就比较低,随着这个计算机硬件和信息大爆炸时代的到来,人工智能也开始飞跃的发展。对于这个试卷的问题,我们再用人工智能去做的时候,1个小时可以判几十万或者更多的试卷。所以人工智能对人类的发展是有一个质的飞跃的。那么我们就来了解一下他是一个怎么样的过程。
🌟项目目标
我们对于一个答题卡拿来差不多是这个样子。
如果我们做一个和四六级差不多的卷子,那么我们同这个项目的原理是一致的。我们就以上图为例子来看。
项目目标:首先我们要在图片中,把试卷的区域利用透视变换给拿出来。也就是提取自己的ROI区域。然后答题卡填充的答案类似于实心的,没有填充的答案类似于是一个空心的。识别出来之后,我们要和输入的答案进行一个比较,如果对就记录下来,如果不对,那么就不记录,最后利用这个来判分。完成一个批分的功能。
1:检测图像中的检查。
2:应用透视转换以提取考试的自上而下的鸟瞰图。
3:从转换的考试的角度中提取气泡集(即可能的答案选择)。
4:将问题/气泡排序为行。
5:确定每行的标记(即“气泡”)答案。
6:在我们的答案键中查找正确答案,以确定用户的选择是否正确。
7:对考试中的所有问题重复上述步骤。
🌟项目讲解
⭐️一、数据预处理
导入参数
ap = argparse.ArgumentParser()
ap.add_argument("-i","--image", required=True,help="path to the input image")
args =vars(ap.parse_args())
defcv_show(name,img):
cv2.imshow(name, img)
cv2.waitKey(0)
cv2.destroyAllWindows()
image = cv2.imread(args["image"])
contours_img = image.copy()
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blurred = cv2.GaussianBlur(gray,(5,5),0)
cv_show('blurred',blurred)
edged = cv2.Canny(blurred,75,200)
cv_show('edged',edged)
这里是一些基础的形态学操作,首先我们将图像由RGB转为gray图像,灰度图像。然后我们对灰度图像进行一个高斯滤波操作,目的就是消除掉图片中的一些噪音点,方便后期处理。
高斯滤波之后,我们又做了一次边缘检测,以75和200像素值作为阈值。对滤波后的操作进行一个边缘检测。
然后我们对边缘检测后的图像进行轮廓检测,并且画出轮廓。文档的边缘是如何清晰定义的,检查的所有四个顶点都存在于图像中。获取文档的这个轮廓非常重要,因为我们将使用它作为标记,将透视转换应用于考试,从而获得文档的自上而下的鸟瞰图。
cnts = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)[0]
cv2.drawContours(contours_img,cnts,-1,(0,0,255),3)
cv_show('contours_img',contours_img)
这里要注意就是老版本的CV轮廓检测返回的是三个结果,而新的版本返回的是两个结果。所以我们只需要第一个结果,所以索引就是定位0,老版本就定为1.然后我们定义参数,只检测外轮廓,并且使用四个点检测轮廓的方法。完成之后我们生成的图像就是:
我们检测出来外面轮廓之后,接下来想把整个试卷拿出来,做一个透视变换操作。拿到轮廓的坐标。
docCnt =Noneiflen(cnts)>0:# 根据轮廓大小进行排序
cnts =sorted(cnts, key=cv2.contourArea, reverse=True)# 遍历每一个轮廓for c in cnts:
peri = cv2.arcLength(c,True)
approx = cv2.approxPolyDP(c,0.02* peri,True)# 准备做透视变换iflen(approx)==4:
docCnt = approx
break
⭐️二、透视变换
这里我们把轮廓按照面积做了一个排序,然后遍历排序后的轮廓。
cv2.approxPolyDP
主要功能是把一个连续光滑曲线折线化。如果轮廓检测出来是四个点组成的,那么我们就把他给拿出来。
warped = four_point_transform(gray, docCnt.reshape(4,2))
cv_show('warped',warped)
其中four_point_transform函数对应的转换操作是:
deffour_point_transform(image, pts):
rect = order_points(pts)(tl, tr, br, bl)= rect
# 计算输入的w和h值
widthA = np.sqrt(((br[0]- bl[0])**2)+((br[1]- bl[1])**2))
widthB = np.sqrt(((tr[0]- tl[0])**2)+((tr[1]- tl[1])**2))
maxWidth =max(int(widthA),int(widthB))
heightA = np.sqrt(((tr[0]- br[0])**2)+((tr[1]- br[1])**2))
heightB = np.sqrt(((tl[0]- bl[0])**2)+((tl[1]- bl[1])**2))
maxHeight =max(int(heightA),int(heightB))# 变换后对应坐标位置
dst = np.array([[0,0],[maxWidth -1,0],[maxWidth -1, maxHeight -1],[0, maxHeight -1]], dtype ="float32")# 计算变换矩阵
M = cv2.getPerspectiveTransform(rect, dst)
warped = cv2.warpPerspective(image, M,(maxWidth, maxHeight))# 返回变换后结果return warped
首先我们用
order_points
把四个点的坐标提取出来了。然后我们计算一下透视变换的w和h。选择出来透视变换之后的坐标结果。然后我们基于这两个结果求出一个中间矩阵M,然后使用一个当前矩阵*中间矩阵M就得到了透视变换之后的结果。
其中
order_points
函数是:
deforder_points(pts):
rect = np.zeros((4,2), dtype ="float32")# 按顺序找到对应坐标0123分别是 左上,右上,右下,左下# 计算左上,右下
s = pts.sum(axis =1)
rect[0]= pts[np.argmin(s)]
rect[2]= pts[np.argmax(s)]# 计算右上和左下
diff = np.diff(pts, axis =1)
rect[1]= pts[np.argmin(diff)]
rect[3]= pts[np.argmax(diff)]return rect
对着四个点进行操作,如果相加那么肯定是左上的点是最小的,右下的点是最大的。那么我们把他提取出来。然后在做差,那么很明显就是右上是最大的,左下是最小的,这样我们就把四个点给提取出来了。然后返回回去。
⭐️三、阈值处理
我们拿到了透视变换的结果之后,对透视结果进行操作,首先我们进行一次阈值处理。这里的阈值处理如下:
thresh = cv2.threshold(warped,0,255,
cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
cv_show('thresh',thresh)
这里不是选择阈值为0,再次强调!!!!而是让计算机随机的给我们提供一个阈值合适的数值。然后进行阈值处理。得到的结果是:
然后对结果做一次轮廓检测。
cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)[0]
cv2.drawContours(thresh_Contours,cnts,-1,(0,0,255),3)
cv_show('thresh_Contours',thresh_Contours)
还是同上面做轮廓检测的结果一致。得到的结果是这样:
⭐️四、过滤干扰项
然后我们过滤掉一些干扰项。
questionCnts =[]for c in cnts:(x, y, w, h)= cv2.boundingRect(c)
ar = w /float(h)#ar定义一个长宽比if w >=20and h >=20and ar >=0.9and ar <=1.1:
questionCnts.append(c)
questionCnts = sort_contours(questionCnts,
method="top-to-bottom")[0]
correct =0# 每排有5个选项for(q, i)inenumerate(np.arange(0,len(questionCnts),5)):
cnts = sort_contours(questionCnts[i:i +5])[0]
bubbled =None# 遍历每一个结果for(j, c)inenumerate(cnts):# 使用mask来判断结果
mask = np.zeros(thresh.shape, dtype="uint8")
cv2.drawContours(mask,[c],-1,255,-1)#-1表示填充
cv_show('mask',mask)# 通过计算非零点数量来算是否选择这个答案
mask = cv2.bitwise_and(thresh, thresh, mask=mask)
total = cv2.countNonZero(mask)# 通过阈值判断if bubbled isNoneor total > bubbled[0]:
bubbled =(total, j)# 对比正确答案
color =(0,0,255)
k = ANSWER_KEY[q]# 判断正确if k == bubbled[1]:
color =(0,255,0)
correct +=1# 绘图
cv2.drawContours(warped,[cnts[k]],-1, color,3)
首先我们定义一个长宽比,然后我们根据长宽比和wh对实际项目进行一个过滤轮廓操作。首先我们进行一次竖直方向的一个排序。分为一排一排的,然后我们在遍历每一排,对每一排进行一个排序。然后我们使用一个掩码和正确答案做一个与操作,然后通过判断其中非0点的个数来判断是都是正确答案。因为涂卡的地方我们处理之后的结果都是白色像素点较多。选择出来结果之后我们和正确答案进行一次对比。正确答案是我们提前定义好的:通过对比索引,我们就可以得到结果。
ANSWER_KEY ={0:1,1:4,2:0,3:3,4:1}
其中
sort_contours
的函数具体是这样。
defsort_contours(cnts, method="left-to-right"):
reverse =False
i =0if method =="right-to-left"or method =="bottom-to-top":
reverse =Trueif method =="top-to-bottom"or method =="bottom-to-top":
i =1
boundingBoxes =[cv2.boundingRect(c)for c in cnts](cnts, boundingBoxes)=zip(*sorted(zip(cnts, boundingBoxes),
key=lambda b: b[1][i], reverse=reverse))return cnts, boundingBoxes
排序的结果也可以展示一下。
通过一次一次遍历来判断。
⭐️五、展示操作
score =(correct /5.0)*100print("[INFO] score: {:.2f}%".format(score))
cv2.putText(warped,"{:.2f}%".format(score),(10,30),
cv2.FONT_HERSHEY_SIMPLEX,0.9,(0,0,255),2)
cv2.imshow("Original", image)
cv2.imshow("Exam", warped)
cv2.waitKey(0)
在原图中画出来可以使用红色标记为错误选项!
这里我们就完成了判卷的过程。
⭐️后续问题
1.如果用户在特定问题的答案中没有冒泡,会发生什么情况?
2.如果用户是恶意的,并在同一行中将多个气泡标记为“正确”,该怎么办?
对于问题一:
如果考试的人选择不在特定行的答案中冒泡,那么我们可以在代码中上放置一个最小阈值,
cv2.countNonZero
如果这个值足够大,那么我们可以将选项标记为“已填充”。相反,如果太小,那么我们可以跳过那个特定的气泡。如果在行的末尾没有具有足够大阈值计数的气泡,我们可以将问题标记为应试者“跳过”。也就是没有答题。
对于问题二:
同样,我们需要做的就是应用阈值和计数步骤,这次如果有多个气泡的 a 超过某个预定义的值,则进行跟踪。如果是这样,我们可以使问题无效并将问题标记为不正确。也就是说是单选,而考试的人选择多个选项。
🔎支持:🎁🎁🎁如果觉得博主的文章还不错或者您用得到的话,可以免费的关注一下博主,如果三连收藏支持就更好啦!这就是给予我最大的支持!
版权归原作者 吃猫的鱼python 所有, 如有侵权,请联系我们删除。