0


极限学习机 Extreme Learning Machines 介绍

什么是极限学习机?

极限学习机(ELM, Extreme Learning Machines)是一种前馈神经网络,最早由新加坡南洋理工大学黄广斌教授于2006年提出。其发表的文章中对于极限学习机的描述如下:

该算法具有良好的泛化性能以及极快的学习能力

极限学习机和标准神经网络的区别

ELM 不需要基于梯度的反向传播来调整权重,而是通过 Moore-Penrose generalized inverse来设置权值。

标准的单隐藏层神经网络结构如下:


单隐藏层神经网络
其计算过程如下:

  1. 输入值乘以权重值
  2. 加上偏置值
  3. 进行激活函数计算
  4. 对每一层重复步骤1~3
  5. 计算输出值
  6. 误差反向传播
  7. 重复步骤1~6

而 ELM 则对其进行了如下改进:去除步骤4;用一次矩阵逆运算替代步骤6;去除步骤7。

极限学习机计算过程

具体地,ELM 计算过程如下:

式中:

L 是隐藏单元的数量;

N 是训练样本的数量;

beta 是第 i 个隐藏层和输出之间的权重向量;

w 是输入和输出之间的权重向量;

g 是激活函数;

b 是偏置向量;

x 是输入向量。

极限学习机的计算过程与标准反向传播神经网络十分类似,但是隐藏层与输出之间的权重矩阵是伪逆矩阵。将上式可以简写为:

式中:

m 是输出的数量;

H 是隐藏层输出矩阵;

T 是训练集目标矩阵;

ELM 主要相关理论

定理一:

定理二:

定理三:

了解了上述定理后,现在我们要做的是定义我们的代价函数。如果输入权重和隐层层偏差可以随机选择,那么SLFN是一个线性系统。

由于我们考虑的 ELM 是一个线性系统,那么可以设计优化函数:

由于 H 是可逆的,所以计算如下:

ELM 算法

ELM 算法主要过程有:

  1. w_i,b_i,i=1,L 随机初始化
  2. 计算隐藏层输出 H
  3. 计算输出权重矩阵
  4. 利用 beta 在新的数据集上进行预测 T

Python 应用案例见https://github.com/burnpiro/elm-pure

其中,基础的 ELM 算法就能够在 MNIST 数据集达到 91%以上的准确率,并且在 intel i7 7820X CPU 平台上通过 3s 就能够计算完成。

性能对比

首次提出 ELM 的论文中,于2006年通过 Pentium 4 1.9GHz CPU 用 ELM 方法对不同的数据集进行了计算,结果如下:

很明显梯度下降比矩阵反转需要更长的训练时间。此结果表中最重要的信息是准确性和节点数。在前两个数据集中,可以看到作者使用了不同大小的BP来获得与ELM相同的结果。在第一种情况下,BP网络的大小是原来的5倍,在第二种情况下,BP网络的大小是原来的2倍。也说明了 ELM 方法在逼近数据集时有很高的精确性。

本文也对两个具有代表性的数据集(CIFAR-10, MNIST)进行了分析,结果如下:

总结

ELM 算法虽然没有传统神经网络的准确度高,但是可以被用于需要即时计算的场景中。

DeepHub

微信号 : deephub-imba

每日大数据和人工智能的重磅干货

大厂职位内推信息

长按识别二维码关注 ->

好看就点在看!********** **********

标签:

“极限学习机 Extreme Learning Machines 介绍”的评论:

还没有评论