0


OpenCV入门【C++版】

OpenCV基础入门【C++语言】

  1. OpenCV3.4.6安装包(含contrib):https://pan.baidu.com/s/1KBD-fAO63p0s5ANYa5XcEQ 提取码:p7j0
  2. resources资源:https://pan.baidu.com/s/1nkQ6iVV7IeeP4gTXvM_DyQ 提取码:ypvt

Chapter1 读取图片/视频/摄像头

从文件读取图片

模块功能imgcodecsImage file reading and writingimgprocImage ProcssinghighguiHigh-level GUI

  • Mat cv::imread(const String &filename, int flags = IMREAD_COLOR)

从文件加载图像。函数

imread

从指定文件加载图像并返回。 如果无法读取图像(由于缺少文件、权限不正确、格式不受支持或无效),该函数将返回一个空矩阵(

 Mat::data==NULL

)。在彩色图像的情况下,解码图像的通道将以 B G R 顺序存储。

  • void cv::imshow(cosnst String &winnanme, InputArray mat)

在指定窗口中显示图像。这个函数后面应该是

cv::waitKey

函数,它显示指定毫秒的图像。否则,它不会显示图像。例如,

waitKey(0)

将无限显示窗口,直到有任何按键(适用于图像显示)。

waitKey(25)

将显示一帧 25 毫秒,之后显示将自动关闭。(如果你把它放在一个循环中读取视频,它会逐帧显示视频)

  • int cv::waitKey(int delay = 0)

等待按下的键。函数

waitKey 

无限等待按键事件(当

delay≤0 

时)或延迟毫秒,当它为正时。由于操作系统在切换线程之间有最短时间,因此该函数不会完全等待延迟毫秒,它会至少等待延迟毫秒,具体取决于当时您计算机上正在运行的其他内容。如果在指定的时间过去之前没有按下任何键,则返回被按下键的代码或 -1。

#include<opencv2/imgcodecs.hpp>#include<opencv2/highgui.hpp>#include<opencv2/imgproc.hpp>#include<iostream>usingnamespace cv;usingnamespace std;intmain(){
    string path ="Resources/test.png";
    Mat img =imread(path);imshow("Image", img);waitKey(0);//显示图片不会一闪而过return0;}

cv1

从文件读取视频

要捕获视频,需要创建一个VideoCapture对象。它的参数可以是视频文件的名称或设备索引。
OpenCV3.4.6中

VideoCapture

类构造函数及成员函数

  • cv::VideoCapture::VideoCapture()
  • cv::VideoCapture::VideoCapture(const String &filename)
  • cv::VideoCapture::VideoCapture(const String &filename, int apiPreference)
  • cv::VideoCapture::VideoCapture(int index)
  • cv::VideoCapture::VideoCapture(int index, int apiPreference)

打开视频文件或捕获设备或 IP 视频流进行视频捕获

  • virtual bool cv::VideoCapture::isOpened() const

如果视频捕获已经初始化,则返回true。如果先前对

VideoCapture 

构造函数或

VideoCapture::open()

的调用成功,则该方法返回 true。

  • virtual bool cv::VideoCapture::read(OutputArray image)

抓取、解码并返回下一个视频帧

  • virtual double cv::VideoCapture::get(int proId) const

返回指定的

VideoCapture

属性

  • virtual double cv::VideoCapture::set(int proId, double value)

VideoCapture

中设置一个属性

#include<opencv2/imgcodecs.hpp>#include<opencv2/highgui.hpp>#include<opencv2/imgproc.hpp>#include<iostream>usingnamespace cv;usingnamespace std;intmain(){
    string path ="Resources/test_video.mp4";
    VideoCapture cap(path);//视频捕捉对象
    Mat img;while(true){

        cap.read(img);imshow("Image", img);waitKey(1);}return0;}

读摄像头

#include<opencv2/imgcodecs.hpp>#include<opencv2/highgui.hpp>#include<opencv2/imgproc.hpp>#include<iostream>usingnamespace cv;usingnamespace std;intmain(){
    VideoCapture cap(0);
    Mat img;while(true){

        cap.read(img);imshow("Image", img);waitKey(1);}return0;}

Chapter2 基础函数

  • void cv::cvtColor(InputArray src, OutputArray dst, int code, int dstCn = 0)

将图像从一种颜色空间转换为另一种颜色空间。该函数将输入图像从一种颜色空间转换为另一种颜色空间。在从 RGB 颜色空间转换的情况下,应明确指定通道的顺序(RGB 或 BGR)。man请注意,OpenCV 中的默认颜色格式通常称为 RGB,但实际上是 BGR(字节反转)。因此,标准(24 位)彩色图像中的第一个字节将是 8 位蓝色分量,第二个字节将是绿色,第三个字节将是红色。 然后第四、第五和第六个字节将是第二个像素(蓝色,然后是绿色,然后是红色),依此类推。

  • void cv::GaussianBlur(InputArray src, OutputArray dst, Size ksize, double sigmaX, doube sigmaY = 0, int borderType = BORDER_DEFAULT)

使用高斯滤波器模糊图像。该函数将源图像与指定的高斯核进行卷积。

  • void cv::Canny(InputArray image, OutputArray edges, double threshold1, double threshold2, int apertureSize = 3, bool L2gradient = false)

使用 Canny 算法在图像中查找边缘

  • Mat cv::getStructuringElement(int shape, Size ksize, Point anchor = Point(-1, -1))

返回指定大小和形状的结构元素,用于形态学操作。该函数构造并返回可以进一步传递给腐蚀、扩张或形态学的结构元素。 但是您也可以自己构建任意二进制掩码并将其用作结构元素。

  • void cv::dilate(InputArray src, OutputArray dst, InuputArray kernel, Point anchor = Point(-1, -1), int iterations = 1, int borderType = BORDER_CONSTANT, const Scalar &borderValue = morphologyDefaultBorderValue())

使用特定的结构元素膨胀图像

  • void cv::erode(InputArray src, OutputArray dst, InuputArray kernel, Point anchor = Point(-1, -1), int iterations = 1, int borderType = BORDER_CONSTANT, const Scalar &borderValue = morphologyDefaultBorderValue())

使用特定的结构元素腐蚀图像

#include<opencv2/imgcodecs.hpp>#include<opencv2/highgui.hpp>#include<opencv2/imgproc.hpp>#include<iostream>usingnamespace cv;usingnamespace std;intmain(){
    string path ="resources/test.png";
    Mat img =imread(path);
    Mat imgGray, imgBlur, imgCanny, imgDil, imgErode;cvtColor(img, imgGray, COLOR_BGR2GRAY);//灰度化GaussianBlur(img, imgBlur,Size(3,3),3,0);//高斯模糊Canny(imgBlur, imgCanny,25,75);//边缘检测

    Mat kernel =getStructuringElement(MORPH_RECT,Size(3,3));dilate(imgCanny, imgDil, kernel);erode(imgDil, imgErode, kernel);imshow("Image", img);imshow("ImageGray", imgGray);imshow("ImageBlur", imgBlur);imshow("ImageCanny", imgCanny);imshow("ImageDilation", imgDil);imshow("ImageErode", imgErode);waitKey(0);return0;}

cv2
cv3
cv4
cv5
cv6

Chapter3 调整和剪裁

  • void cv::resize(InputArray src, OutputArray dst, Size dsize, double fx=0, double fy=0, int interpolation = INTER_LINEAR)

调整图像的大小。函数

resize

将图像

src

的大小缩小到或最大到指定的大小。请注意,不考虑初始

dst 

类型或大小。相反,大小和类型是从

src、dsize、fx 和 fy

派生的。

#include<opencv2/imgcodecs.hpp>#include<opencv2/highgui.hpp>#include<opencv2/imgproc.hpp>#include<iostream>usingnamespace cv;usingnamespace std;intmain(){
    string path ="resources/test.png";
    Mat img =imread(path);
    Mat imgResize, imgCrop;

    cout << img.size()<< endl;resize(img, imgResize,Size(),0.5,0.5);

    Rect roi(200,100,300,300);
    imgCrop =img(roi);imshow("Image", img);imshow("ImageResieze", imgResize);imshow("ImageCrop", imgCrop);waitKey(0);return0;}

cv7
cv8

Chapter4 绘制形状和文字

  • Mat(int rows, int cols, int type, const Scalar &s)

重载的构造函数

  • void cv::circle(InputOutputArray img, Point center, int radius, const Scalar &color, int thickness=1, int lineType=LINE_8, int shift=0)

函数

cv::circle

用给定的中心和半径绘制一个简单的或实心圆

  • void cv::rectangle(InputOutputArray img, Point pt1, Point pt2, const Scalar &color, int thickness=1, int lineType=LINE_8, int shift=0)
  • void cv::rectangle(Mat &img, Rect rec, const Scalar &color, int thickness=1, int lineType=LINE_8, int shift=0)

绘制一个简单的、粗的或填充的右上矩形。函数

cv::rectangle

绘制一个矩形轮廓或两个对角为 pt1 和 pt2 的填充矩形。

  • void cv::line (InputOutputArray img, Point pt1, Point pt2, const Scalar &color, int thickness=1, int lineType=LINE_8, int shift=0)

绘制连接两点的线段。函数

line

绘制图像中 pt1 和 pt2 点之间的线段。

  • void cv::putText (InputOutputArray img, const String &text, Point org, int fontFace, double fontScale, Scalar color, int thickness=1, int lineType=LINE_8, bool bottomLeftOrigin=false)

绘制一个文本字符串。函数

cv::putText

在图像中呈现指定的文本字符串。无法使用指定字体呈现的符号将替换为问号。

#include<opencv2/imgcodecs.hpp>#include<opencv2/highgui.hpp>#include<opencv2/imgproc.hpp>#include<iostream>usingnamespace cv;usingnamespace std;intmain(){//Blank Image
    Mat img(512,512, CV_8UC3,Scalar(255,255,255));circle(img,Point(256,256),155,Scalar(0,69,255), FILLED);rectangle(img,Point(130,226),Point(382,286),Scalar(255,255,255),-1);line(img,Point(130,296),Point(382,296),Scalar(255,255,255),2);putText(img,"SJN's Workshop",Point(137,262), FONT_HERSHEY_DUPLEX,0.95,Scalar(0,69,255),2);imshow("Image", img);waitKey(0);return0;}

cv9

Chapter5 透视变换

  • Mat cv::getPerspectiveTransform (const Point2f src[], const Point2f dst[])

返回相应 4 个点对的 3x3 透视变换

  • void cv::warpPerspective (InputArray src, OutputArray dst, InputArray M, Size dsize, int flags=INTER_LINEAR, int borderMode=BORDER_CONSTANT, const Scalar &borderValue=Scalar())

对图像应用透视变换

#include<opencv2/imgcodecs.hpp>#include<opencv2/highgui.hpp>#include<opencv2/imgproc.hpp>#include<iostream>usingnamespace cv;usingnamespace std;float w =250, h =350;
Mat matrix, imgWarp;intmain(){
    string path ="Resources/cards.jpg";
    Mat img =imread(path);

    Point2f src[4]={{529,142},{771,190},{405,395},{674,457}};
    Point2f dst[4]={{0.0f,0.0f},{w,0.0f},{0.0f, h},{w, h}};

    matrix =getPerspectiveTransform(src, dst);warpPerspective(img, imgWarp, matrix,Point(w, h));for(int i =0; i <4; i++){circle(img, src[i],10,Scalar(0,0,255), FILLED);}imshow("Image", img);imshow("ImageWarp", imgWarp);waitKey(0);return0;}

cv10
cv11
注:文档扫描用到这种变换技术

Chapter6 颜色检测

  • void cv::inRange (InputArray src, InputArray lowerb, InputArray upperb, OutputArray dst)

检查数组元素是否位于其他两个数组的元素之间。

  • void cv::namedWindow (const String &winname, int flags = WINDOW_AUTOSIZE)

创建一个窗口。函数

namedWindow

创建一个可用作图像和轨迹栏占位符的窗口。创建的窗口由它们的名称引用。如果同名的窗口已经存在,则该函数不执行任何操作。

  • int cv::createTrackbar (const String &trackbarname, const String &winname, int *value, int count, TrackbarCallback onChange = 0, void *userdata = 0)

创建一个

trackbar

并将其附加到指定窗口。函数

createTrackbar

创建一个具有指定名称和范围的

trackbar

(滑块或范围控件),分配一个变量值作为与

trackbar

同步的位置,并指定回调函数

onChange

为 在跟踪栏位置变化时被调用。创建的轨迹栏显示在指定的窗口

winname

中。

#include<opencv2/imgcodecs.hpp>#include<opencv2/highgui.hpp>#include<opencv2/imgproc.hpp>#include<iostream>usingnamespace cv;usingnamespace std;

Mat imgHSV, mask;int hmin =0, smin =110, vmin =153;int hmax =19, smax =240, vmax =255;intmain(){
    string path ="resources/lambo.png";
    Mat img =imread(path);cvtColor(img, imgHSV, COLOR_BGR2HSV);namedWindow("Trackbars",(640,200));createTrackbar("Hue Min","Trackbars",&hmin,179);createTrackbar("Hue Max","Trackbars",&hmax,179);createTrackbar("Sat Min","Trackbars",&smin,255);createTrackbar("Sat Max","Trackbars",&smax,255);createTrackbar("Val Min","Trackbars",&vmin,255);createTrackbar("Val Max","Trackbars",&vmax,2555);while(true){

        Scalar lower(hmin, smin, vmin);
        Scalar upper(hmax, smax, vmax);inRange(imgHSV, lower, upper, mask);imshow("Image", img);imshow("Image HSV", imgHSV);imshow("Image Mask", mask);waitKey(1);}return0;}

cv12
v13
cv14
cv15

Chapter7 形状/轮廓检测

  • void cv::findContours(InputOutputArray image, OutputArrayOfArrays contours, OutputArray hierarchy, int mode, int method, Point offset = Point())

在二值图像中查找轮廓。从OpenCV3.2开始源图像不会这个函数被修改。

参数含义image二值输入图像contours检测到的轮廓,每个轮廓都存储为点向量(例如

std::vector<std::vector<cv::Point> >

)hierarchy可选的输出向量(例如

 std::vector<cv::Vec4i>

),包含有关图像拓扑的信息mode轮廓检索模式method轮廓近似方式offset每个轮廓点移动的可选偏移量

  • double cv::contourArea(InputArray contour, bool oriented=false)

计算轮廓区域

  • double cv::arcLength(InputArray curve, bool closed)

计算曲线长度或闭合轮廓周长

  • void cv::approxPolyDP(InputArray curve, OutputArray approxCurve, double epsilon, bool closed)

函数

cv::approxPolyDP

用另一个具有较少顶点的曲线/多边形来逼近一条曲线或多边形,以使它们之间的距离小于或等于指定的精度

  • Rect cv::boundingRect(InputArray array)

计算并返回指定点集或灰度图像非零像素的最小上边界矩形

  • void cv::drawContours(InputOutputArray image, InputArrayOfArrays contours, int contourIdx, const Scalar &color, int thickness = 1, int lineType = LINE_8, InputArray hierarchy = noArray(), int maxLevel = INT_MAX, Point offset = Point())

绘制轮廓轮廓或填充轮廓。如果厚度≥0,该函数在图像中绘制轮廓轮廓,如果厚度<0,则填充轮廓所包围的区域。

  • Point_< _Tp > tl() const

左上角

  • Point_< _Tp > br() const

右下角

//recttemplate<typename_Tp>classcv::Rect_< _Tp >typedef Rect_<int> cv::Rect2i
typedef Rect2i cv::Rect
//pointtemplate<typename_Tp>classcv::Point_< _Tp >typedef Point_<int> cv::Point2i
typedef Point2i cv::Point
cv::Rect_< _Tp >

类属性含义height矩形高度width矩形宽度x左上角的 x 坐标y左上角的 y 坐标

#include<opencv2/imgcodecs.hpp>#include<opencv2/highgui.hpp>#include<opencv2/imgproc.hpp>#include<iostream>usingnamespace cv;usingnamespace std;voidgetContours(Mat imgDil, Mat img){

    vector<vector<Point>> contours;//轮廓数据
    vector<Vec4i> hierarchy;findContours(imgDil, contours, hierarchy, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE);//通过预处理的二值图像找到所有轮廓contours//drawContours(img, contours, -1, Scalar(255, 0, 255), 2); //绘制所有轮廓for(int i =0; i < contours.size(); i++){double area =contourArea(contours[i]);//计算每个轮廓区域
        cout << area << endl;

        vector<vector<Point>>conPoly(contours.size()); 
        vector<Rect>boundRect(contours.size());
        string objectType;if(area >1000)//过滤噪声{//找轮廓的近似多边形或曲线double peri =arcLength(contours[i],true);approxPolyDP(contours[i], conPoly[i],0.02* peri,true);
            
            cout << conPoly[i].size()<< endl;
            boundRect[i]=boundingRect(conPoly[i]);//找每个近似曲线的最小上边界矩形int objCor =(int)conPoly[i].size();if(objCor ==3){ objectType ="Tri";}if(objCor ==4){float aspRatio =(float)boundRect[i].width / boundRect[i].height;//宽高比
                cout << aspRatio << endl;if(aspRatio >0.95&& aspRatio <1.05){
                    objectType ="Square";}else{
                    objectType ="Rect";}}if(objCor >4){ objectType ="CirCle";}drawContours(img, conPoly, i,Scalar(255,0,255),2);//绘制滤除噪声后的所有轮廓rectangle(img, boundRect[i].tl(), boundRect[i].br(),Scalar(0,255,0),5);//绘制边界框putText(img, objectType,{ boundRect[i].x, boundRect[i].y -5}, FONT_HERSHEY_PLAIN,1,Scalar(0,69,255),1);}}}intmain(){
    string path ="resources/shapes.png";
    Mat img =imread(path);
    Mat imgGray, imgBlur, imgCanny, imgDil;// PreprocessingcvtColor(img, imgGray, COLOR_BGR2GRAY);GaussianBlur(imgGray, imgBlur,Size(3,3),3,0);Canny(imgBlur, imgCanny,25,75);
    Mat kernel =getStructuringElement(MORPH_RECT,Size(3,3));dilate(imgCanny, imgDil, kernel);getContours(imgDil, img);imshow("Image", img);/*imshow("Image Gray", imgGray);
    imshow("Image Blur", imgBlur);
    imshow("Image Canny", imgCanny);
    imshow("Image Dil", imgDil);*/waitKey(0);return0;}

cv16

Chapter8 人脸检测

涉及模块

objdetect:Object Detection
  • class cv::CascadeClassifier

用于对象检测的级联分类器类

  • bool load (const String &filename)

从文件加载分类器。

  • bool empty() const

检查分类器是否已加载。

  • void detectMultiScale(InputArray image, std::vector<Rect> &objects, double scaleFactor=1.1, int minNeighbors=3, int flags=0, Size minSize=Size(), Size maxSize=Size())

检测输入图像中不同大小的对象。检测到的对象作为矩形列表返回。

#include<opencv2/imgcodecs.hpp>#include<opencv2/highgui.hpp>#include<opencv2/imgproc.hpp>#include<opencv2/objdetect.hpp>#include<iostream>usingnamespace cv;usingnamespace std;intmain(){
    string path ="Resources/test.png";
    Mat img =imread(path);

    CascadeClassifier faceCascade;
    faceCascade.load("Resources/haarcascade_frontalface_default.xml");if(faceCascade.empty()){ cout <<"XML file not loaded"<< endl;}

    vector<Rect> faces;
    faceCascade.detectMultiScale(img, faces,1.1,10);for(int i =0; i < faces.size(); i++){rectangle(img, faces[i].tl(), faces[i].br(),Scalar(255,0,255),3);}imshow("Image", img);waitKey(0);return0;}

cv17

Project1 虚拟画家

颜色选择器:先找出待检测颜色的HSV阈值

#include<opencv2/imgcodecs.hpp>#include<opencv2/highgui.hpp>#include<opencv2/imgproc.hpp>#include<iostream>usingnamespace cv;usingnamespace std;intmain(){
    VideoCapture cap(1);
    Mat img;
    Mat imgHSV, mask, imgColor;int hmin =0, smin =0, vmin =0;int hmax =179, smax =255, vmax =255;namedWindow("Trackbars",(640,200));// Create WindowcreateTrackbar("Hue Min","Trackbars",&hmin,179);createTrackbar("Hue Max","Trackbars",&hmax,179);createTrackbar("Sat Min","Trackbars",&smin,255);createTrackbar("Sat Max","Trackbars",&smax,255);createTrackbar("Val Min","Trackbars",&vmin,255);createTrackbar("Val Max","Trackbars",&vmax,255);while(true){

        cap.read(img);cvtColor(img, imgHSV, COLOR_BGR2HSV);

        Scalar lower(hmin, smin, vmin);
        Scalar upper(hmax, smax, vmax);inRange(imgHSV, lower, upper, mask);// hmin, smin, vmin, hmax, smax, vmax;
        cout << hmin <<", "<< smin <<", "<< vmin <<", "<< hmax <<", "<< smax <<", "<< vmax << endl;imshow("Image", img);imshow("Mask", mask);waitKey(1);}}

利用检测到颜色的矩形框上边界中点开始虚拟作画

#include<opencv2/imgcodecs.hpp>#include<opencv2/highgui.hpp>#include<opencv2/imgproc.hpp>#include<iostream>usingnamespace cv;usingnamespace std;

Mat img;
vector<vector<int>> newPoints;

vector<vector<int>> myColors{{124,48,117,143,170,255},//purple{68,72,156,102,126,255}};//green

vector<Scalar> myColorValues{{255,0,255},//purple{0,255,0}};//green

Point getContours(Mat imgDil){

    vector<vector<Point>> contours;//轮廓数据
    vector<Vec4i> hierarchy;findContours(imgDil, contours, hierarchy, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE);//通过预处理的二值图像找到所有轮廓contours//drawContours(img, contours, -1, Scalar(255, 0, 255), 2); //绘制所有轮廓(不滤除噪声)
    vector<vector<Point>>conPoly(contours.size());
    vector<Rect>boundRect(contours.size());
    Point myPoint(0,0);for(int i =0; i < contours.size(); i++){double area =contourArea(contours[i]);//计算每个轮廓区域
        cout << area << endl;if(area >1000)//过滤噪声{//找轮廓的近似多边形或曲线double peri =arcLength(contours[i],true);approxPolyDP(contours[i], conPoly[i],0.02* peri,true);

            cout << conPoly[i].size()<< endl;
            boundRect[i]=boundingRect(conPoly[i]);//找每个近似曲线的最小上边界矩形
            myPoint.x = boundRect[i].x + boundRect[i].width /2;
            myPoint.y = boundRect[i].y;//drawContours(img, conPoly, i, Scalar(255, 0, 255), 2); //绘制滤除噪声后的所有轮廓//rectangle(img, boundRect[i].tl(), boundRect[i].br(), Scalar(0, 255, 0), 5); //绘制边界框}}return myPoint;//返回矩形框上边界中点坐标}

vector<vector<int>>findColor(Mat img){
    Mat imgHSV, mask;cvtColor(img, imgHSV, COLOR_BGR2HSV);for(int i =0; i < myColors.size(); i++){
        Scalar lower(myColors[i][0], myColors[i][1], myColors[i][2]);
        Scalar upper(myColors[i][3], myColors[i][4], myColors[i][5]);inRange(imgHSV, lower, upper, mask);//imshow(to_string(i), mask);
        Point myPoint =getContours(mask);//根据mask得到检测到当前颜色矩形框的上边界中点坐标if(myPoint.x !=0&& myPoint.y !=0){
            newPoints.push_back({ myPoint.x, myPoint.y, i });//得到当前帧检测颜色的目标点}}return newPoints;}voiddrawOnCanvas(vector<vector<int>> newPoints, vector<Scalar> myColorValues){for(int i =0; i < newPoints.size(); i++){circle(img,Point(newPoints[i][0], newPoints[i][1]),10, myColorValues[newPoints[i][2]], FILLED);}}intmain(){
    VideoCapture cap(0);while(true){
        cap.read(img);
        newPoints =findColor(img);drawOnCanvas(newPoints, myColorValues);imshow("Image", img);waitKey(1);}return0;}

Project2 文档扫描

#include<opencv2/imgcodecs.hpp>#include<opencv2/highgui.hpp>#include<opencv2/imgproc.hpp>#include<iostream>usingnamespace cv;usingnamespace std;

Mat imgOriginal, imgGray, imgBlur,imgCanny, imgThre, imgDil, imgErode, imgWarp, imgCrop;
vector<Point> initialPoints, docPoints;float w =420, h =596;

Mat preProcessing(Mat img){cvtColor(img, imgGray, COLOR_BGR2GRAY);GaussianBlur(imgGray, imgBlur,Size(3,3),3,0);Canny(imgBlur, imgCanny,25,75); 

    Mat kernel =getStructuringElement(MORPH_RECT,Size(3,3));dilate(imgCanny, imgDil, kernel);//erode(imgDil, imgErode, kernel);return imgDil;}

vector<Point>getContours(Mat imgDil){

    vector<vector<Point>> contours;//轮廓数据
    vector<Vec4i> hierarchy;findContours(imgDil, contours, hierarchy, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE);//通过预处理的二值图像找到所有轮廓contours//drawContours(img, contours, -1, Scalar(255, 0, 255), 2); //绘制所有轮廓(不滤除噪声)
    vector<vector<Point>>conPoly(contours.size());
    vector<Point> biggest;int maxArea =0;for(int i =0; i < contours.size(); i++){double area =contourArea(contours[i]);//计算每个轮廓区域
        cout << area << endl;if(area >1000)//过滤噪声{//找轮廓的近似多边形或曲线double peri =arcLength(contours[i],true);approxPolyDP(contours[i], conPoly[i],0.02* peri,true);if(area > maxArea && conPoly[i].size()==4){//drawContours(imgOriginal, conPoly, i, Scalar(255, 0, 255), 5); //绘制滤除噪声后的所有轮廓
                biggest ={ conPoly[i][0], conPoly[i][1], conPoly[i][2], conPoly[i][3]};
                maxArea = area;}}}return biggest;//返回最大轮廓四个点的坐标}voiddrawPoints(vector<Point> points, Scalar color){for(int i =0; i < points.size(); i++){circle(imgOriginal, points[i],10, color, FILLED);putText(imgOriginal,to_string(i), points[i], FONT_HERSHEY_PLAIN,4, color,4);}}

vector<Point>reorder(vector<Point> points){
    vector<Point> newPoints;
    vector<int> sumPoints, subPoints;for(int i =0; i <4; i++){
        sumPoints.push_back(points[i].x + points[i].y);
        subPoints.push_back(points[i].x - points[i].y);}

    newPoints.push_back(points[min_element(sumPoints.begin(), sumPoints.end())- sumPoints.begin()]);//0
    newPoints.push_back(points[max_element(subPoints.begin(), subPoints.end())- subPoints.begin()]);//1
    newPoints.push_back(points[min_element(subPoints.begin(), subPoints.end())- subPoints.begin()]);//2
    newPoints.push_back(points[max_element(sumPoints.begin(), sumPoints.end())- sumPoints.begin()]);//3return newPoints;}

Mat getWarp(Mat img, vector<Point> points,float w,float h){
    Point2f src[4]={ points[0], points[1], points[2], points[3]};
    Point2f dst[4]={{0.0f,0.0f},{w,0.0f},{0.0f, h},{w, h}};

    Mat matrix =getPerspectiveTransform(src, dst);warpPerspective(img, imgWarp, matrix,Point(w, h));return imgWarp;}intmain(){
    string path ="Resources/paper.jpg";
    imgOriginal =imread(path);//resize(imgOriginal, imgOriginal, Size(), 0.5, 0.5);//Preprocessing
    imgThre =preProcessing(imgOriginal);//Get Contours - Biggest
    initialPoints =getContours(imgThre);//drawPoints(initialPoints, Scalar(0, 0, 255));
    docPoints =reorder(initialPoints);//drawPoints(docPoints, Scalar(0, 255, 0));//Warp
    imgWarp =getWarp(imgOriginal, docPoints, w, h);//Cropint cropValue =5;
    Rect roi(cropValue, cropValue, w -(2* cropValue), h -(2* cropValue));
    imgCrop =imgWarp(roi);imshow("Image", imgOriginal);imshow("Image Dilation", imgThre);imshow("Image Warp", imgWarp);imshow("Image Crop", imgCrop);waitKey(0);return0;}

cv18
cv19

Project3 车牌检测

#include<opencv2/imgcodecs.hpp>#include<opencv2/highgui.hpp>#include<opencv2/imgproc.hpp>#include<opencv2/objdetect.hpp>#include<iostream>usingnamespace cv;usingnamespace std;intmain(){
    VideoCapture cap(0);
    Mat img;

    CascadeClassifier plateCascade;
    plateCascade.load("Resources/haarcascade_russian_plate_number.xml");if(plateCascade.empty()){ cout <<"XML file not loaded"<< endl;}

    vector<Rect> plates;while(true){

        cap.read(img);

        plateCascade.detectMultiScale(img, plates,1.1,10);for(int i =0; i < plates.size(); i++){
            Mat imgCrop =img(plates[i]);imshow(to_string(i), imgCrop);imwrite("D:\\VS2019Projects\\chapter2\\chapter2\\resources\\Plates\\1.png", imgCrop);rectangle(img, plates[i].tl(), plates[i].br(),Scalar(255,0,255),3);}imshow("Image", img);waitKey(1);}return0;}

本文转载自: https://blog.csdn.net/Star_ID/article/details/122656593
版权归原作者 Star_ID 所有, 如有侵权,请联系我们删除。

“OpenCV入门【C++版】”的评论:

还没有评论