0


矩量母函数介绍

1 矩量母函数

矩量母函数又称矩母函数(Moment Generating Function)又称动差生成函数,是一种构造函数,其定义为:

随机变量

      X
     
    
    
     X
    
   
  X是连续型随机变量时,其矩量母函数为:
   
    
     
      
       
        M
       
       
        X
       
      
      
       (
      
      
       t
      
      
       )
      
      
       =
      
      
       E
      
      
       (
      
      
       
        e
       
       
        
         t
        
        
         X
        
       
      
      
       )
      
      
       =
      
      
       
        ∫
       
       
        
         −
        
        
         ∞
        
       
       
        
         +
        
        
         ∞
        
       
      
      
       
        e
       
       
        
         t
        
        
         x
        
       
      
      
       f
      
      
       (
      
      
       x
      
      
       )
      
      
       d
      
      
       x
      
     
     
      M_X(t)=\mathrm{E}(e^{tX})=\int_{-\infty}^{+\infty}e^{tx}f(x)dx
     
    
   MX​(t)=E(etX)=∫−∞+∞​etxf(x)dx随机变量
  
   
    
     
      X
     
    
    
     X
    
   
  X是离散型随机变量时,其矩量母函数为:
   
    
     
      
       
        M
       
       
        X
       
      
      
       (
      
      
       t
      
      
       )
      
      
       =
      
      
       E
      
      
       (
      
      
       
        e
       
       
        
         t
        
        
         X
        
       
      
      
       )
      
      
       =
      
      
       
        ∑
       
       
        
         x
        
        
         i
        
       
      
      
       
        e
       
       
        
         t
        
        
         
          x
         
         
          i
         
        
       
      
      
       p
      
      
       (
      
      
       
        x
       
       
        i
       
      
      
       )
      
     
     
      M_X(t)=\mathrm{E}(e^{tX})=\sum\limits_{x_i}e^{tx_i}p(x_i)
     
    
   MX​(t)=E(etX)=xi​∑​etxi​p(xi​)

由泰勒级数可知

       e
      
      
       x
      
     
     
      =
     
     
      1
     
     
      +
     
     
      x
     
     
      +
     
     
      
       
        x
       
       
        2
       
      
      
       
        2
       
       
        !
       
      
     
     
      +
     
     
      
       
        x
       
       
        3
       
      
      
       
        3
       
       
        !
       
      
     
     
      +
     
     
      
       
        x
       
       
        4
       
      
      
       
        4
       
       
        !
       
      
     
     
      +
     
     
      ⋯
     
     
      +
     
     
      
       
        x
       
       
        n
       
      
      
       
        n
       
       
        !
       
      
     
     
      +
     
     
      ⋯
     
    
    
     e^{x}=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\frac{x^4}{4!}+\cdots+\frac{x^n}{n!}+\cdots
    
   
  ex=1+x+2!x2​+3!x3​+4!x4​+⋯+n!xn​+⋯得到:
  
   
    
     
      
       
        
         
          
           M
          
          
           X
          
         
         
          (
         
         
          t
         
         
          )
         
        
       
      
      
       
        
         
         
          =
         
         
          
           ∫
          
          
           
            −
           
           
            ∞
           
          
          
           
            +
           
           
            ∞
           
          
         
         
          (
         
         
          1
         
         
          +
         
         
          x
         
         
          t
         
         
          +
         
         
          
           
            
             x
            
            
             2
            
           
           
            
             t
            
            
             2
            
           
          
          
           
            2
           
           
            !
           
          
         
         
          +
         
         
          
           
            
             x
            
            
             3
            
           
           
            
             t
            
            
             3
            
           
          
          
           
            3
           
           
            !
           
          
         
         
          +
         
         
          
           
            
             x
            
            
             4
            
           
           
            
             t
            
            
             4
            
           
          
          
           
            4
           
           
            !
           
          
         
         
          +
         
         
          ⋯
         
         
          +
         
         
          
           
            
             x
            
            
             n
            
           
           
            
             t
            
            
             n
            
           
          
          
           
            n
           
           
            !
           
          
         
         
          +
         
         
          ⋯
          
         
          )
         
         
          f
         
         
          (
         
         
          x
         
         
          )
         
         
          d
         
         
          x
         
        
       
      
     
     
      
       
        
       
      
      
       
        
         
         
          =
         
         
          
           ∫
          
          
           
            −
           
           
            ∞
           
          
          
           
            +
           
           
            ∞
           
          
         
         
          f
         
         
          (
         
         
          x
         
         
          )
         
         
          d
         
         
          x
         
         
          +
         
         
          t
         
         
          
           ∫
          
          
           
            −
           
           
            ∞
           
          
          
           
            +
           
           
            ∞
           
          
         
         
          x
         
         
          f
         
         
          (
         
         
          x
         
         
          )
         
         
          d
         
         
          x
         
         
          +
         
         
          
           
            t
           
           
            2
           
          
          
           
            2
           
           
            !
           
          
         
         
          
           ∫
          
          
           
            −
           
           
            ∞
           
          
          
           
            +
           
           
            ∞
           
          
         
         
          
           x
          
          
           2
          
         
         
          f
         
         
          (
         
         
          x
         
         
          )
         
         
          d
         
         
          x
         
         
          +
         
         
          ⋯
         
         
          
           
            t
           
           
            n
           
          
          
           
            n
           
           
            !
           
          
         
         
          
           ∫
          
          
           
            −
           
           
            ∞
           
          
          
           
            +
           
           
            ∞
           
          
         
         
          
           x
          
          
           n
          
         
         
          f
         
         
          (
         
         
          x
         
         
          )
         
         
          d
         
         
          x
         
         
          +
         
         
          ⋯
         
        
       
      
     
     
      
       
        
       
      
      
       
        
         
         
          =
         
         
          
           t
          
          
           0
          
         
         
          
           M
          
          
           0
          
         
         
          +
         
         
          
           t
          
          
           1
          
         
         
          
           M
          
          
           1
          
         
         
          +
         
         
          
           
            t
           
           
            2
           
          
          
           
            2
           
           
            !
           
          
         
         
          
           M
          
          
           2
          
         
         
          +
         
         
          ⋯
         
         
          +
         
         
          
           
            t
           
           
            n
           
          
          
           
            n
           
           
            !
           
          
         
         
          
           M
          
          
           n
          
         
         
          +
         
         
          ⋯
         
        
       
      
     
    
    
     \begin{aligned}M_X(t)&=\int_{-\infty}^{+\infty}(1+xt+\frac{x^2t^2}{2!}+\frac{x^3t^3}{3!}+\frac{x^4t^4}{4!}+\cdots+\frac{x^nt^n}{n!}+\cdots)f(x)dx\\&=\int_{-\infty}^{+\infty}f(x)dx+t\int_{-\infty}^{+\infty}xf(x)dx+\frac{t^2}{2!}\int_{-\infty}^{+\infty}x^2f(x)dx+\cdots \frac{t^n}{n!}\int_{-\infty}^{+\infty}x^nf(x)dx+\cdots\\&=t^0 M_0 + t^1 M_1 +\frac{t^2}{2!}M_2+\cdots+\frac{t^n}{n!}M_n+\cdots\end{aligned}
    
   
  MX​(t)​=∫−∞+∞​(1+xt+2!x2t2​+3!x3t3​+4!x4t4​+⋯+n!xntn​+⋯)f(x)dx=∫−∞+∞​f(x)dx+t∫−∞+∞​xf(x)dx+2!t2​∫−∞+∞​x2f(x)dx+⋯n!tn​∫−∞+∞​xnf(x)dx+⋯=t0M0​+t1M1​+2!t2​M2​+⋯+n!tn​Mn​+⋯​其中,
 
  
   
    
     
      M
     
     
      n
     
    
   
   
    M_n
   
  
 Mn​即为
 
  
   
    
     X
    
   
   
    X
   
  
 X的
 
  
   
    
     n
    
   
   
    n
   
  
 n阶中心距。

矩量母函数对

      t
     
    
    
     t
    
   
  t求
  
   
    
     
      n
     
    
    
     n
    
   
  n阶导可得
   
    
     
      
       
        
         
          
           
            M
           
           
            X
           
           
            
             (
            
            
             n
            
            
             )
            
           
          
          
           (
          
          
           t
          
          
           )
          
         
        
       
       
        
         
          
          
           =
          
          
           (
          
          
           
            t
           
           
            0
           
          
          
           
            M
           
           
            0
           
          
          
           
            )
           
           
            
             (
            
            
             n
            
            
             )
            
           
          
          
           +
          
          
           (
          
          
           
            t
           
           
            1
           
          
          
           
            M
           
           
            1
           
          
          
           
            )
           
           
            
             (
            
            
             n
            
            
             )
            
           
          
          
           +
          
          
           
            
             (
            
            
             
              
               t
              
              
               2
              
             
             
              
               2
              
              
               !
              
             
            
            
             
              M
             
             
              2
             
            
            
             )
            
           
           
            
             (
            
            
             n
            
            
             )
            
           
          
          
           +
          
          
           ⋯
          
          
           +
          
          
           
            
             (
            
            
             
              
               t
              
              
               n
              
             
             
              
               n
              
              
               !
              
             
            
            
             
              M
             
             
              n
             
            
            
             )
            
           
           
            
             (
            
            
             n
            
            
             )
            
           
          
          
           +
          
          
           
            
             (
            
            
             
              
               t
              
              
               
                (
               
               
                n
               
               
                +
               
               
                1
               
               
                )
               
              
             
             
              
               (
              
              
               n
              
              
               +
              
              
               1
              
              
               )
              
              
               !
              
             
            
            
             
              M
             
             
              
               n
              
              
               +
              
              
               1
              
             
            
            
             )
            
           
           
            
             (
            
            
             n
            
            
             )
            
           
          
          
           +
          
          
           ⋯
          
         
        
       
      
      
       
        
         
        
       
       
        
         
          
          
           =
          
          
           0
          
          
           +
          
          
           0
          
          
           +
          
          
           0
          
          
           +
          
          
           ⋯
          
          
           +
          
          
           
            M
           
           
            n
           
          
          
           +
          
          
           
            
             (
            
            
             n
            
            
             +
            
            
             1
            
            
             )
            
            
             ⋅
            
            
             n
            
            
             ⋅
            
            
             (
            
            
             n
            
            
             −
            
            
             1
            
            
             )
            
            
             ⋯
            
            
             2
            
            
             ⋅
            
            
             t
            
           
           
            
             (
            
            
             n
            
            
             +
            
            
             1
            
            
             )
            
            
             !
            
           
          
          
           
            M
           
           
            
             n
            
            
             +
            
            
             1
            
           
          
          
           +
          
          
           ⋯
          
         
        
       
      
     
     
      \begin{aligned}M^{(n)}_X(t)&=(t^0M_0)^{(n)}+(t^1M_1)^{(n)}+\left(\frac{t^2}{2!}M_2\right)^{(n)}+\cdots+\left(\frac{t^n}{n!}M_n\right)^{(n)}+\left(\frac{t^{(n+1)}}{(n+1)!}M_{n+1}\right)^{(n)}+\cdots\\&=0+0+0+\cdots+M_n+\frac{(n+1)\cdot n \cdot (n-1) \cdots 2 \cdot t}{(n+1)!}M_{n+1}+\cdots\end{aligned}
     
    
   MX(n)​(t)​=(t0M0​)(n)+(t1M1​)(n)+(2!t2​M2​)(n)+⋯+(n!tn​Mn​)(n)+((n+1)!t(n+1)​Mn+1​)(n)+⋯=0+0+0+⋯+Mn​+(n+1)!(n+1)⋅n⋅(n−1)⋯2⋅t​Mn+1​+⋯​当
  
   
    
     
      t
     
     
      =
     
     
      0
     
    
    
     t=0
    
   
  t=0时,则有

   
    
     
      
       
        
         
          
           
            M
           
           
            X
           
           
            
             (
            
            
             n
            
            
             )
            
           
          
          
           (
          
          
           0
          
          
           )
          
         
        
       
       
        
         
          
          
           =
          
          
           0
          
          
           +
          
          
           0
          
          
           +
          
          
           0
          
          
           +
          
          
           ⋯
          
          
           +
          
          
           
            M
           
           
            n
           
          
          
           +
          
          
           
            
             (
            
            
             n
            
            
             +
            
            
             1
            
            
             )
            
            
             ⋅
            
            
             n
            
            
             ⋅
            
            
             (
            
            
             n
            
            
             −
            
            
             1
            
            
             )
            
            
             ⋯
            
            
             2
            
            
             ⋅
            
            
             0
            
           
           
            
             (
            
            
             n
            
            
             +
            
            
             1
            
            
             )
            
            
             !
            
           
          
          
           
            M
           
           
            
             n
            
            
             +
            
            
             1
            
           
          
          
           +
          
          
           ⋯
          
          
           0
          
          
           +
          
          
           ⋯
          
         
        
       
      
      
       
        
         
        
       
       
        
         
          
          
           =
          
          
           
            M
           
           
            n
           
          
         
        
       
      
     
     
      \begin{aligned}M^{(n)}_X(0)&=0+0+0+\cdots+M_n+\frac{(n+1)\cdot n \cdot (n-1) \cdots 2 \cdot 0}{(n+1)!}M_{n+1}+\cdots 0 +\cdots\\&=M_n\end{aligned}
     
    
   MX(n)​(0)​=0+0+0+⋯+Mn​+(n+1)!(n+1)⋅n⋅(n−1)⋯2⋅0​Mn+1​+⋯0+⋯=Mn​​由此可知随机变量
  
   
    
     
      X
     
    
    
     X
    
   
  X的均值和方差分别为:
   
    
     
      
       E
      
      
       (
      
      
       X
      
      
       )
      
      
       =
      
      
       
        M
       
       
        X
       
       
        
         (
        
        
         1
        
        
         )
        
       
      
      
       (
      
      
       0
      
      
       )
      
      
       =
      
      
       
        ∫
       
       
        
         −
        
        
         ∞
        
       
       
        
         +
        
        
         ∞
        
       
      
      
       x
      
      
       f
      
      
       (
      
      
       x
      
      
       )
      
      
       d
      
      
       x
      
      
       =
      
      
       
        M
       
       
        1
       
      
     
     
      \mathrm{E}(X)=M_X^{(1)}(0)=\int_{-\infty}^{+\infty}xf(x)dx=M_1
     
    
   E(X)=MX(1)​(0)=∫−∞+∞​xf(x)dx=M1​
   
    
     
      
       
        V
       
       
        a
       
       
        r
       
      
      
       (
      
      
       X
      
      
       )
      
      
       =
      
      
       E
      
      
       (
      
      
       
        X
       
       
        2
       
      
      
       )
      
      
       −
      
      
       [
      
      
       E
      
      
       (
      
      
       X
      
      
       )
      
      
       
        ]
       
       
        2
       
      
      
       =
      
      
       
        ∫
       
       
        
         −
        
        
         ∞
        
       
       
        
         +
        
        
         ∞
        
       
      
      
       
        x
       
       
        2
       
      
      
       p
      
      
       (
      
      
       x
      
      
       )
      
      
       d
      
      
       x
      
      
       −
      
      
       
        
         (
        
        
         
          ∫
         
         
          
           −
          
          
           ∞
          
         
         
          
           +
          
          
           ∞
          
         
        
        
         x
        
        
         p
        
        
         (
        
        
         x
        
        
         )
        
        
         d
        
        
         x
        
        
         )
        
       
       
        2
       
      
      
       =
      
      
       
        M
       
       
        2
       
      
      
       −
      
      
       (
      
      
       
        M
       
       
        1
       
      
      
       
        )
       
       
        2
       
      
     
     
      \mathrm{Var}(X)=\mathrm{E}(X^2)-[\mathrm{E}(X)]^2=\int_{-\infty}^{+\infty}x^2p(x)dx-\left(\int_{-\infty}^{+\infty}xp(x)dx\right)^2=M_2-(M_1)^2
     
    
   Var(X)=E(X2)−[E(X)]2=∫−∞+∞​x2p(x)dx−(∫−∞+∞​xp(x)dx)2=M2​−(M1​)2

2 参数为

     n
    
   
   
    n
   
  
 n和
 
  
   
    
     p
    
   
   
    p
   
  
 p的二项分布

离散随机变量

     X
    
   
   
    X
   
  
 X服从参数为
 
  
   
    
     n
    
   
   
    n
   
  
 n和
 
  
   
    
     p
    
   
   
    p
   
  
 p的二项分布,则其矩母函数为
  
   
    
     
      
       
        
         
          ϕ
         
         
          (
         
         
          t
         
         
          )
         
        
       
      
      
       
        
         
         
          =
         
         
          E
         
         
          [
         
         
          
           e
          
          
           
            t
           
           
            X
           
          
         
         
          ]
         
         
          =
         
         
          
           ∑
          
          
           
            k
           
           
            =
           
           
            0
           
          
          
           n
          
         
         
          
           e
          
          
           
            t
           
           
            k
           
          
         
         
          
           (
          
          
           
            
             
              
               n
              
             
            
           
           
            
             
              
               k
              
             
            
           
          
          
           )
          
         
         
          
           p
          
          
           k
          
         
         
          (
         
         
          1
         
         
          −
         
         
          p
         
         
          
           )
          
          
           
            n
           
           
            −
           
           
            k
           
          
         
        
       
      
     
     
      
       
        
       
      
      
       
        
         
         
          =
         
         
          
           ∑
          
          
           
            k
           
           
            =
           
           
            0
           
          
          
           n
          
         
         
          
           (
          
          
           
            
             
              
               n
              
             
            
           
           
            
             
              
               k
              
             
            
           
          
          
           )
          
         
         
          (
         
         
          p
         
         
          
           e
          
          
           t
          
         
         
          
           )
          
          
           k
          
         
         
          (
         
         
          1
         
         
          −
         
         
          p
         
         
          
           )
          
          
           
            n
           
           
            −
           
           
            k
           
          
         
        
       
      
     
     
      
       
        
       
      
      
       
        
         
         
          =
         
         
          (
         
         
          p
         
         
          
           e
          
          
           t
          
         
         
          +
         
         
          1
         
         
          −
         
         
          p
         
         
          
           )
          
          
           n
          
         
        
       
      
     
    
    
     \begin{aligned}\phi(t)&=\mathrm{E}[e^{tX}]=\sum\limits_{k=0}^ne^{tk}\left(\begin{array}{c}n\\k\end{array}\right)p^k (1-p)^{n-k}\\&=\sum\limits_{k=0}^n\left(\begin{array}{c}n\\k\end{array}\right)(pe^t)^k(1-p)^{n-k}\\&=(pe^t+1-p)^n\end{aligned}
    
   
  ϕ(t)​=E[etX]=k=0∑n​etk(nk​)pk(1−p)n−k=k=0∑n​(nk​)(pet)k(1−p)n−k=(pet+1−p)n​因此
  
   
    
     
      
       ϕ
      
      
       ′
      
     
     
      (
     
     
      t
     
     
      )
     
     
      =
     
     
      n
     
     
      (
     
     
      p
     
     
      
       e
      
      
       t
      
     
     
      +
     
     
      1
     
     
      −
     
     
      p
     
     
      
       )
      
      
       
        n
       
       
        −
       
       
        1
       
      
     
     
      p
     
     
      
       e
      
      
       t
      
     
    
    
     \phi^{\prime}(t)=n(pe^t+1-p)^{n-1}pe^t
    
   
  ϕ′(t)=n(pet+1−p)n−1pet所以则有
  
   
    
     
      E
     
     
      [
     
     
      X
     
     
      ]
     
     
      =
     
     
      
       ϕ
      
      
       ′
      
     
     
      (
     
     
      0
     
     
      )
     
     
      =
     
     
      n
     
     
      p
     
    
    
     \mathrm{E}[X]=\phi^{\prime}(0)=np
    
   
  E[X]=ϕ′(0)=np求二阶导则有
  
   
    
     
      
       ϕ
      
      
       
        ′
       
       
        ′
       
      
     
     
      (
     
     
      t
     
     
      )
     
     
      =
     
     
      n
     
     
      (
     
     
      n
     
     
      −
     
     
      1
     
     
      )
     
     
      (
     
     
      p
     
     
      
       e
      
      
       t
      
     
     
      +
     
     
      1
     
     
      −
     
     
      p
     
     
      
       )
      
      
       
        n
       
       
        −
       
       
        2
       
      
     
     
      (
     
     
      p
     
     
      
       e
      
      
       t
      
     
     
      
       )
      
      
       2
      
     
     
      +
     
     
      n
     
     
      (
     
     
      p
     
     
      
       e
      
      
       t
      
     
     
      +
     
     
      1
     
     
      −
     
     
      p
     
     
      
       )
      
      
       
        n
       
       
        −
       
       
        1
       
      
     
     
      p
     
     
      
       e
      
      
       t
      
     
    
    
     \phi^{\prime\prime}(t)=n(n-1)(pe^t+1-p)^{n-2}(pe^t)^2+n(pe^t+1-p)^{n-1}pe^t
    
   
  ϕ′′(t)=n(n−1)(pet+1−p)n−2(pet)2+n(pet+1−p)n−1pet所以
  
   
    
     
      E
     
     
      [
     
     
      
       X
      
      
       2
      
     
     
      ]
     
     
      =
     
     
      
       ϕ
      
      
       
        ′
       
       
        ′
       
      
     
     
      (
     
     
      0
     
     
      )
     
     
      =
     
     
      n
     
     
      (
     
     
      n
     
     
      −
     
     
      1
     
     
      )
     
     
      
       p
      
      
       2
      
     
     
      +
     
     
      n
     
     
      p
     
    
    
     \mathrm{E}[X^2]=\phi^{\prime\prime}(0)=n(n-1)p^2+np
    
   
  E[X2]=ϕ′′(0)=n(n−1)p2+np因此,
 
  
   
    
     X
    
   
   
    X
   
  
 X的方差为
  
   
    
     
      
       V
      
      
       a
      
      
       r
      
     
     
      (
     
     
      X
     
     
      )
     
     
      =
     
     
      E
     
     
      [
     
     
      
       X
      
      
       2
      
     
     
      ]
     
     
      −
     
     
      (
     
     
      E
     
     
      [
     
     
      X
     
     
      ]
     
     
      
       )
      
      
       2
      
     
     
      =
     
     
      n
     
     
      (
     
     
      n
     
     
      −
     
     
      1
     
     
      )
     
     
      
       p
      
      
       2
      
     
     
      +
     
     
      n
     
     
      p
     
     
      −
     
     
      
       n
      
      
       2
      
     
     
      
       p
      
      
       2
      
     
     
      =
     
     
      n
     
     
      p
     
     
      (
     
     
      1
     
     
      −
     
     
      p
     
     
      )
     
    
    
     \mathrm{Var}(X)=\mathrm{E}[X^2]-(\mathrm{E}[X])^2=n(n-1)p^2+np-n^2p^2=np(1-p)
    
   
  Var(X)=E[X2]−(E[X])2=n(n−1)p2+np−n2p2=np(1−p)

3 均值为

     λ
    
   
   
    \lambda
   
  
 λ的泊松分布

离散随机变量

     X
    
   
   
    X
   
  
 X服从均值为
 
  
   
    
     λ
    
   
   
    \lambda
   
  
 λ的泊松分布,则其矩母函数为
  
   
    
     
      ϕ
     
     
      (
     
     
      t
     
     
      )
     
     
      =
     
     
      E
     
     
      [
     
     
      
       e
      
      
       
        t
       
       
        X
       
      
     
     
      ]
     
     
      =
     
     
      
       ∑
      
      
       
        k
       
       
        =
       
       
        0
       
      
      
       ∞
      
     
     
      
       
        
         e
        
        
         
          t
         
         
          n
         
        
       
       
        
         e
        
        
         
          −
         
         
          λ
         
        
       
       
        
         λ
        
        
         n
        
       
      
      
       
        n
       
       
        !
       
      
     
     
      =
     
     
      
       e
      
      
       
        −
       
       
        λ
       
      
     
     
      
       ∑
      
      
       
        n
       
       
        =
       
       
        0
       
      
      
       ∞
      
     
     
      
       
        (
       
       
        λ
       
       
        
         e
        
        
         t
        
       
       
        
         )
        
        
         n
        
       
      
      
       
        n
       
       
        !
       
      
     
     
      =
     
     
      
       e
      
      
       
        −
       
       
        λ
       
      
     
     
      
       e
      
      
       
        λ
       
       
        
         e
        
        
         t
        
       
      
     
     
      =
     
     
      exp
     
     
      ⁡
     
     
      {
     
     
      λ
     
     
      (
     
     
      
       e
      
      
       t
      
     
     
      −
     
     
      1
     
     
      )
     
     
      }
     
    
    
     \phi(t)=\mathrm{E}[e^{tX}]=\sum\limits_{k=0}^\infty\frac{e^{tn}e^{-\lambda}\lambda^n}{n!}=e^{-\lambda}\sum\limits_{n=0}^{\infty}\frac{(\lambda e^t)^n}{n!}=e^{-\lambda}e^{\lambda e^t}=\exp\{\lambda(e^t-1)\}
    
   
  ϕ(t)=E[etX]=k=0∑∞​n!etne−λλn​=e−λn=0∑∞​n!(λet)n​=e−λeλet=exp{λ(et−1)}求微分可得
  
   
    
     
      
       
        
         
          
           ϕ
          
          
           ′
          
         
         
          (
         
         
          t
         
         
          )
         
        
       
      
      
       
        
         
         
          =
         
         
          λ
         
         
          
           e
          
          
           t
          
         
         
          exp
         
         
          ⁡
         
         
          {
         
         
          λ
         
         
          (
         
         
          
           e
          
          
           t
          
         
         
          −
         
         
          1
         
         
          )
         
         
          }
         
        
       
      
     
     
      
       
        
         
          
           ϕ
          
          
           
            ′
           
           
            ′
           
          
         
         
          (
         
         
          t
         
         
          )
         
        
       
      
      
       
        
         
         
          =
         
         
          (
         
         
          λ
         
         
          
           e
          
          
           t
          
         
         
          
           )
          
          
           2
          
         
         
          exp
         
         
          ⁡
         
         
          {
         
         
          λ
         
         
          (
         
         
          
           e
          
          
           t
          
         
         
          −
         
         
          1
         
         
          )
         
         
          }
         
         
          +
         
         
          λ
         
         
          
           e
          
          
           t
          
         
         
          {
         
         
          λ
         
         
          (
         
         
          
           e
          
          
           t
          
         
         
          −
         
         
          1
         
         
          )
         
         
          }
         
        
       
      
     
    
    
     \begin{aligned}\phi^{\prime}(t)&=\lambda e^t\exp\{\lambda(e^t-1)\}\\\phi^{\prime\prime}(t)&=(\lambda e^t)^2 \exp\{\lambda(e^t-1)\}+\lambda e^t\{\lambda(e^t-1)\}\end{aligned}
    
   
  ϕ′(t)ϕ′′(t)​=λetexp{λ(et−1)}=(λet)2exp{λ(et−1)}+λet{λ(et−1)}​所以则有
  
   
    
     
      
       
        
         
          E
         
         
          [
         
         
          X
         
         
          ]
         
        
       
      
      
       
        
         
         
          =
         
         
          
           ϕ
          
          
           ′
          
         
         
          (
         
         
          0
         
         
          )
         
         
          =
         
         
          λ
         
        
       
      
     
     
      
       
        
         
          E
         
         
          [
         
         
          X
         
         
          ]
         
        
       
      
      
       
        
         
         
          =
         
         
          
           ϕ
          
          
           
            ′
           
           
            ′
           
          
         
         
          (
         
         
          0
         
         
          )
         
         
          =
         
         
          
           λ
          
          
           2
          
         
         
          +
         
         
          λ
         
        
       
      
     
     
      
       
        
         
          
           V
          
          
           a
          
          
           r
          
         
         
          (
         
         
          X
         
         
          )
         
        
       
      
      
       
        
         
         
          =
         
         
          E
         
         
          [
         
         
          
           X
          
          
           2
          
         
         
          ]
         
         
          −
         
         
          (
         
         
          E
         
         
          [
         
         
          X
         
         
          ]
         
         
          
           )
          
          
           2
          
         
         
          =
         
         
          λ
         
        
       
      
     
    
    
     \begin{aligned}\mathrm{E}[X]&=\phi^{\prime}(0)=\lambda\\\mathrm{E}[X]&=\phi^{\prime\prime}(0)=\lambda^2+\lambda\\ \mathrm{Var}(X)&=\mathrm{E}[X^2]-(\mathrm{E}[X])^2=\lambda\end{aligned}
    
   
  E[X]E[X]Var(X)​=ϕ′(0)=λ=ϕ′′(0)=λ2+λ=E[X2]−(E[X])2=λ​因此,泊松分布的均值和方差都是
 
  
   
    
     λ
    
   
   
    \lambda
   
  
 λ。

4 参数为

     λ
    
   
   
    \lambda
   
  
 λ的指数分布

离散随机变量

     X
    
   
   
    X
   
  
 X服从参数为
 
  
   
    
     λ
    
   
   
    \lambda
   
  
 λ的指数分布,则其矩母函数为
  
   
    
     
      ϕ
     
     
      (
     
     
      t
     
     
      )
     
     
      =
     
     
      E
     
     
      [
     
     
      
       e
      
      
       
        t
       
       
        X
       
      
     
     
      ]
     
     
      =
     
     
      
       ∫
      
      
       0
      
      
       ∞
      
     
     
      
       e
      
      
       
        t
       
       
        x
       
      
     
     
      λ
     
     
      
       e
      
      
       
        −
       
       
        λ
       
       
        x
       
      
     
     
      d
     
     
      x
     
     
      =
     
     
      λ
     
     
      
       ∫
      
      
       0
      
      
       ∞
      
     
     
      
       e
      
      
       
        −
       
       
        (
       
       
        λ
       
       
        −
       
       
        t
       
       
        )
       
       
        x
       
      
     
     
      d
     
     
      x
     
     
      =
     
     
      
       λ
      
      
       
        λ
       
       
        −
       
       
        t
       
      
     
     
      ,
     
     
     
      t
     
     
      <
     
     
      λ
     
    
    
     \phi(t)=\mathrm{E}[e^{tX}]=\int_0^{\infty}e^{tx}\lambda e^{-\lambda x}dx=\lambda \int_{0}^{\infty}e^{-(\lambda -t)x}dx =\frac{\lambda}{\lambda -t},\quad t < \lambda
    
   
  ϕ(t)=E[etX]=∫0∞​etxλe−λxdx=λ∫0∞​e−(λ−t)xdx=λ−tλ​,t<λ从上面的推导可以发现,对于指数分布,
 
  
   
    
     ϕ
    
    
     (
    
    
     t
    
    
     )
    
   
   
    \phi(t)
   
  
 ϕ(t)只对小于
 
  
   
    
     λ
    
   
   
    \lambda
   
  
 λ的
 
  
   
    
     t
    
   
   
    t
   
  
 t值定义。对
 
  
   
    
     ϕ
    
    
     (
    
    
     t
    
    
     )
    
   
   
    \phi(t)
   
  
 ϕ(t)微分可以得到
  
   
    
     
      
       ϕ
      
      
       ′
      
     
     
      (
     
     
      t
     
     
      )
     
     
      =
     
     
      
       λ
      
      
       
        (
       
       
        λ
       
       
        −
       
       
        t
       
       
        
         )
        
        
         2
        
       
      
     
     
      ,
     
     
     
      
       ϕ
      
      
       
        ′
       
       
        ′
       
      
     
     
      (
     
     
      t
     
     
      )
     
     
      =
     
     
      
       
        2
       
       
        λ
       
      
      
       
        (
       
       
        λ
       
       
        −
       
       
        t
       
       
        
         )
        
        
         3
        
       
      
     
    
    
     \phi^{\prime}(t)=\frac{\lambda}{(\lambda - t)^2},\quad \phi^{\prime\prime}(t)=\frac{2\lambda}{(\lambda - t)^3}
    
   
  ϕ′(t)=(λ−t)2λ​,ϕ′′(t)=(λ−t)32λ​因此
  
   
    
     
      E
     
     
      [
     
     
      X
     
     
      ]
     
     
      =
     
     
      
       ϕ
      
      
       ′
      
     
     
      (
     
     
      0
     
     
      )
     
     
      =
     
     
      
       1
      
      
       λ
      
     
     
      ,
     
     
     
      E
     
     
      [
     
     
      
       X
      
      
       2
      
     
     
      ]
     
     
      =
     
     
      
       ϕ
      
      
       
        ′
       
       
        ′
       
      
     
     
      (
     
     
      0
     
     
      )
     
     
      =
     
     
      
       2
      
      
       
        λ
       
       
        2
       
      
     
    
    
     \mathrm{E}[X]=\phi^{\prime}(0)=\frac{1}{\lambda},\quad \mathrm{E}[X^2]=\phi^{\prime\prime}(0)=\frac{2}{\lambda^2}
    
   
  E[X]=ϕ′(0)=λ1​,E[X2]=ϕ′′(0)=λ22​于是
 
  
   
    
     X
    
   
   
    X
   
  
 X的方差为
  
   
    
     
      
       V
      
      
       a
      
      
       r
      
     
     
      (
     
     
      X
     
     
      )
     
     
      =
     
     
      E
     
     
      [
     
     
      
       X
      
      
       2
      
     
     
      ]
     
     
      −
     
     
      (
     
     
      E
     
     
      [
     
     
      X
     
     
      ]
     
     
      
       )
      
      
       2
      
     
     
      =
     
     
      
       1
      
      
       
        λ
       
       
        2
       
      
     
    
    
     \mathrm{Var}(X)=\mathrm{E}[X^2]-(\mathrm{E}[X])^2=\frac{1}{\lambda^2}
    
   
  Var(X)=E[X2]−(E[X])2=λ21​

5 参数为

     μ
    
   
   
    \mu
   
  
 μ和
 
  
   
    
     
      δ
     
     
      2
     
    
   
   
    \delta^2
   
  
 δ2的正态分布

标准正态随机变量

     X
    
   
   
    X
   
  
 X的矩母函数如下所示
  
   
    
     
      
       
        
         
          E
         
         
          [
         
         
          
           e
          
          
           
            t
           
           
            X
           
          
         
         
          ]
         
        
       
      
      
       
        
         
         
          =
         
         
          
           1
          
          
           
            
             2
            
            
             π
            
           
          
         
         
          
           ∫
          
          
           
            −
           
           
            ∞
           
          
          
           
            +
           
           
            ∞
           
          
         
         
          
           e
          
          
           
            t
           
           
            x
           
          
         
         
          
           e
          
          
           
            −
           
           
            
             x
            
            
             2
            
           
           
            /
           
           
            2
           
          
         
         
          d
         
         
          x
         
         
          =
         
         
          
           1
          
          
           
            
             2
            
            
             π
            
           
          
         
         
          
           ∫
          
          
           
            −
           
           
            ∞
           
          
          
           
            +
           
           
            ∞
           
          
         
         
          
           e
          
          
           
            −
           
           
            (
           
           
            
             x
            
            
             2
            
           
           
            −
           
           
            2
           
           
            t
           
           
            x
           
           
            )
           
          
         
         
          d
         
         
          x
         
        
       
      
     
     
      
       
        
       
      
      
       
        
         
         
          =
         
         
          
           e
          
          
           
            
             t
            
            
             2
            
           
           
            /
           
           
            2
           
          
         
         
          
           1
          
          
           
            
             2
            
            
             π
            
           
          
         
         
          
           ∫
          
          
           
            −
           
           
            ∞
           
          
          
           
            +
           
           
            ∞
           
          
         
         
          
           e
          
          
           
            −
           
           
            (
           
           
            x
           
           
            −
           
           
            t
           
           
            
             )
            
            
             2
            
           
           
            /
           
           
            2
           
          
         
         
          d
         
         
          x
         
         
          =
         
         
          
           e
          
          
           
            
             t
            
            
             2
            
           
           
            /
           
           
            2
           
          
         
        
       
      
     
    
    
     \begin{aligned}\mathrm{E}[e^{tX}]&=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{+\infty}e^{tx}e^{-x^2/2}dx=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{+\infty}e^{-(x^2-2tx)}dx\\&=e^{t^2/2}\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{+\infty}e^{-(x-t)^2/2}dx = e^{t^2/2}\end{aligned}
    
   
  E[etX]​=2π​1​∫−∞+∞​etxe−x2/2dx=2π​1​∫−∞+∞​e−(x2−2tx)dx=et2/22π​1​∫−∞+∞​e−(x−t)2/2dx=et2/2​如果
 
  
   
    
     X
    
   
   
    X
   
  
 X是标准正态分布,那么
 
  
   
    
     Z
    
    
     =
    
    
     σ
    
    
     X
    
    
     +
    
    
     μ
    
   
   
    Z=\sigma X +\mu
   
  
 Z=σX+μ就是参数为
 
  
   
    
     μ
    
   
   
    \mu
   
  
 μ和
 
  
   
    
     
      σ
     
     
      2
     
    
   
   
    \sigma^2
   
  
 σ2的正态分布,则有
  
   
    
     
      ϕ
     
     
      (
     
     
      t
     
     
      )
     
     
      =
     
     
      E
     
     
      [
     
     
      
       e
      
      
       
        t
       
       
        Z
       
      
     
     
      ]
     
     
      =
     
     
      E
     
     
      [
     
     
      
       e
      
      
       
        t
       
       
        (
       
       
        σ
       
       
        X
       
       
        +
       
       
        μ
       
       
        )
       
      
     
     
      ]
     
     
      =
     
     
      
       e
      
      
       
        t
       
       
        u
       
      
     
     
      E
     
     
      [
     
     
      
       e
      
      
       
        t
       
       
        σ
       
       
        X
       
      
     
     
      ]
     
     
      =
     
     
      exp
     
     
      ⁡
     
     
      
       {
      
      
       
        
         
          σ
         
         
          2
         
        
        
         
          t
         
         
          2
         
        
       
       
        2
       
      
      
       +
      
      
       μ
      
      
       t
      
      
       }
      
     
    
    
     \phi(t)=\mathrm{E}[e^{tZ}]=\mathrm{E}[e^{t(\sigma X + \mu)}]=e^{tu}\mathrm{E}[e^{t\sigma X}]=\exp\left\{\frac{\sigma^2t^2}{2}+\mu t\right\}
    
   
  ϕ(t)=E[etZ]=E[et(σX+μ)]=etuE[etσX]=exp{2σ2t2​+μt}经过微分可以得到
  
   
    
     
      
       
        
         
          
           ϕ
          
          
           ′
          
         
         
          (
         
         
          t
         
         
          )
         
        
       
      
      
       
        
         
         
          =
         
         
          (
         
         
          μ
         
         
          +
         
         
          t
         
         
          
           σ
          
          
           2
          
         
         
          )
         
         
          exp
         
         
          ⁡
         
         
          {
         
         
          
           
            
             σ
            
            
             2
            
           
           
            
             t
            
            
             2
            
           
          
          
           2
          
         
         
          +
         
         
          μ
         
         
          t
         
         
          }
         
        
       
      
     
     
      
       
        
         
          
           ϕ
          
          
           
            ′
           
           
            ′
           
          
         
         
          (
         
         
          t
         
         
          )
         
        
       
      
      
       
        
         
         
          =
         
         
          (
         
         
          μ
         
         
          +
         
         
          t
         
         
          
           σ
          
          
           2
          
         
         
          
           )
          
          
           2
          
         
         
          exp
         
         
          ⁡
         
         
          {
         
         
          
           
            
             σ
            
            
             2
            
           
           
            
             t
            
            
             2
            
           
          
          
           2
          
         
         
          +
         
         
          μ
         
         
          t
         
         
          }
         
         
          +
         
         
          
           σ
          
          
           2
          
         
         
          exp
         
         
          ⁡
         
         
          
           {
          
          
           
            
             
              σ
             
             
              2
             
            
            
             
              t
             
             
              2
             
            
           
           
            2
           
          
          
           +
          
          
           μ
          
          
           t
          
          
           }
          
         
        
       
      
     
    
    
     \begin{aligned}\phi^{\prime}(t)&=(\mu+t\sigma^2)\exp\{\frac{\sigma^2 t^2}{2}+\mu t\}\\\phi^{\prime\prime}(t)&=(\mu+ t\sigma^2)^2\exp\{\frac{\sigma^2 t^2}{2}+\mu t\}+\sigma^2 \exp \left\{\frac{\sigma^2 t^2}{2}+\mu t\right\}\end{aligned}
    
   
  ϕ′(t)ϕ′′(t)​=(μ+tσ2)exp{2σ2t2​+μt}=(μ+tσ2)2exp{2σ2t2​+μt}+σ2exp{2σ2t2​+μt}​所以则有
  
   
    
     
      E
     
     
      [
     
     
      X
     
     
      ]
     
     
      =
     
     
      
       ϕ
      
      
       ′
      
     
     
      (
     
     
      0
     
     
      )
     
     
      =
     
     
      μ
     
     
      ,
     
     
     
      E
     
     
      [
     
     
      
       X
      
      
       2
      
     
     
      ]
     
     
      =
     
     
      
       ϕ
      
      
       
        ′
       
       
        ′
       
      
     
     
      (
     
     
      0
     
     
      )
     
     
      =
     
     
      
       μ
      
      
       2
      
     
     
      +
     
     
      
       σ
      
      
       2
      
     
    
    
     \mathrm{E}[X]=\phi^{\prime}(0)=\mu,\quad \mathrm{E}[X^2]=\phi^{\prime\prime}(0)=\mu^2+\sigma^2
    
   
  E[X]=ϕ′(0)=μ,E[X2]=ϕ′′(0)=μ2+σ2方差为
  
   
    
     
      
       V
      
      
       a
      
      
       r
      
      
       (
      
      
       X
      
      
       )
      
     
     
      =
     
     
      E
     
     
      [
     
     
      
       X
      
      
       2
      
     
     
      ]
     
     
      −
     
     
      (
     
     
      E
     
     
      [
     
     
      X
     
     
      ]
     
     
      
       )
      
      
       2
      
     
     
      =
     
     
      
       σ
      
      
       2
      
     
    
    
     \mathrm{Var(X)}=\mathrm{E}[X^2]-(\mathrm{E}[X])^2=\sigma^2
    
   
  Var(X)=E[X2]−(E[X])2=σ2

本文转载自: https://blog.csdn.net/qq_38406029/article/details/122659445
版权归原作者 鬼道2022 所有, 如有侵权,请联系我们删除。

“矩量母函数介绍”的评论:

还没有评论