0


BMP图像处理(jpeg转bmp,以及bmp图片缩放,附代码)

背景

1、主要记录下BMP图片的功能,里面包括jpeg格式图片转bmp格式的图片,还有bmp图片的缩放,因为bmp格式的图片一般都很大。

2、网上搜的代码,好多的代码都有依赖,有些是依赖libjpeg.dll,有些是boost,有些是opencv,后面废了不少力气终于找到没有依赖的,太爱了,直接上代码了。

一、BMP图片讲解:

1、BMP(Bitmap)是一种常见的图像文件格式,它是一种无损压缩的图像格式,也就是说,它不会丢失图像的任何细节信息。BMP文件可以存储黑白、灰度或彩色图像,并且可以支持多种位深度和分辨率。

2、BMP图片格式:

  • BMP格式的文件通常包含一个文件头和一个位图信息头。

文件头包含了文件类型、文件大小、保留字、位图数据偏移量等信息;

位图信息头则包括了图像的宽度、高度、颜色位数、压缩方式、颜色表等信息。

在图像数据中,每个像素都被表示为一组二进制数,其中每个数表示一个颜色分量,如红色、绿色和蓝色。

(1)文件头:bitmap file header

BITMAPFILEHEADER是位图文件头的结构体,用于描述位图文件的格式和属性。

它通常位于位图文件的开头,其长度为14个字节,包含以下字段:


BITMAPFILEHEADER结构体的定义如下:
typedef struct tagBITMAPFILEHEADER {
    WORD  bfType;//文件类型,必须为"BM",占用2个字节
    DWORD bfSize;//文件大小,以字节为单位,占用4个字节
    WORD  bfReserved1;//bfReserved1和bfReserved2:保留字段,占用各2个字节,通常设置为0。
    WORD  bfReserved2;
    DWORD bfOffBits;//bfOffBits:位图数据的偏移量,即位图文件头和位图信息头之后的字节数,占用4个字节。
} BITMAPFILEHEADER;
其中,WORD和DWORD分别表示2个字节和4个字节的无符号整数类型。

(2)位图信息头 : bitmap info header

BITMAPINFOHEADER是Windows中用于描述位图文件头信息的结构体。

它包含了位图的宽度、高度、颜色位深度等信息,用于解析和显示位图文件。


BITMAPINFOHEADER结构体的定义如下:

typedef struct tagBITMAPINFOHEADER {
  DWORD biSize;//结构体的大小,以字节为单位,必须为40。
  LONG  biWidth;//位图的宽度,以像素为单位。
  LONG  biHeight;//位图的高度,以像素为单位。如果值为正数,则表示位图是从上到下的;如果值为负数,则表示位图是从下到上的。
  WORD  biPlanes;//目标设备的位平面数,必须为1
  WORD  biBitCount;//每个像素的位数,可以是1、4、8、16、24或32。
  DWORD biCompression;//指定位图压缩类型。常用的有BI_RGB、BI_RLE8和BI_RLE4。
  DWORD biSizeImage;//位图数据的大小,以字节为单位。
  LONG  biXPelsPerMeter;//目标设备水平方向上每米像素数。
  LONG  biYPelsPerMeter;//目标设备垂直方向上每米像素数。
  DWORD biClrUsed;//位图实际使用的颜色表中的颜色数。
  DWORD biClrImportant;//对图像显示有重要影响的颜色索引数。
} BITMAPINFOHEADER, *PBITMAPINFOHEADER;

BITMAPINFOHEADER结构体是位图文件格式中重要的一部分,通过解析这些信息,可以正确地显示和处理位图文件。

二、代码:

1、头文件:

/*
* @Description: BMP图片的功能
* @Author: Ivy
* @Date: 2022-04-25 09:34:43
* @LastEditTime: 2023-02-24 11:28:29
* @LastEditors: XTZJ-2022OQEHLZ
*/

#pragma once
#include "SingleTon.h"

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <string> 
#include <windows.h>
#include <iostream>
#include <memory>

using namespace std;

#define M_SOF0  0xc0
#define M_DHT   0xc4
#define M_EOI   0xd9
#define M_SOS   0xda
#define M_DQT   0xdb
#define M_DRI   0xdd
#define M_APP0  0xe0

static int Zig_Zag[8][8] = { { 0, 1, 5, 6, 14, 15, 27, 28 },
{ 2, 4, 7, 13, 16, 26, 29, 42 },
{ 3, 8, 12, 17, 25, 30, 41, 43 },
{ 9, 11, 18, 24, 37, 40, 44, 53 },
{ 10, 19, 23, 32, 39, 45, 52, 54 },
{ 20, 22, 33, 38, 46, 51, 55, 60 },
{ 21, 34, 37, 47, 50, 56, 59, 61 },
{ 35, 36, 48, 49, 57, 58, 62, 63 }
};

#define W1 2841 /* 2048*sqrt(2)*cos(1*pi/16) */
#define W2 2676 /* 2048*sqrt(2)*cos(2*pi/16) */
#define W3 2408 /* 2048*sqrt(2)*cos(3*pi/16) */
#define W5 1609 /* 2048*sqrt(2)*cos(5*pi/16) */
#define W6 1108 /* 2048*sqrt(2)*cos(6*pi/16) */
#define W7 565  /* 2048*sqrt(2)*cos(7*pi/16) */

//*************************************************************************************
typedef char CHAR;
typedef short SHORT;
typedef long LONG;

typedef unsigned long       DWORD;
typedef int                 BOOL;
typedef unsigned char       BYTE;
typedef unsigned short      WORD;

typedef int HFILE;
typedef CHAR *LPSTR, *PSTR;

#define FALSE 0
#define TRUE 1

//macro definitio
#define WIDTHBYTES(i)    ((i+31)/32*4)
#define PI 3.1415926535
#define FUNC_OK 0
#define FUNC_MEMORY_ERROR 1
#define FUNC_FILE_ERROR 2
#define FUNC_FORMAT_ERROR 3

class CBitmap : public SingleTon<CBitmap>
{
    friend class SingleTon<CBitmap>;

public:
    CBitmap(void);
    virtual ~CBitmap(void);

public:
    bool Jpeg2Bmp(const char* pszSrc, int nSrcLength, unsigned char** pszDst, unsigned int& nDstLength);

private:
    int  InitTag();
    void InitTable();
    int  Decode();
    int  DecodeMCUBlock();
    int  HufBlock(BYTE dchufindex, BYTE achufindex);
    int  DecodeElement();
    void IQtIZzMCUComponent(short flag);
    void IQtIZzBlock(short  *s, int * d, short flag);
    void GetYUV(short flag);
    void StoreBuffer();
    BYTE ReadByte();
    void Initialize_Fast_IDCT();
    void Fast_IDCT(int * block);
    void idctrow(int * blk);
    void idctcol(int * blk);
    string getModulePath();
    bool BmpZoom(BITMAPFILEHEADER head, BITMAPINFOHEADER info, unsigned char** pszSrc, unsigned int nSrcLength, unsigned char** pszDst, unsigned int& nDstLength);

private:
    //global variable declaration
    //char *            hImgData = NULL;
    //std::shared_ptr<char *> hImgData;
    DWORD              NumColors;
    DWORD              LineBytes;
    DWORD              ImgWidth = 0, ImgHeight = 0;
    char*             lpPtr;
    //
    //variables used in jpeg function
    short   SampRate_Y_H, SampRate_Y_V;
    short   SampRate_U_H, SampRate_U_V;
    short   SampRate_V_H, SampRate_V_V;
    short   H_YtoU, V_YtoU, H_YtoV, V_YtoV;
    short   Y_in_MCU, U_in_MCU, V_in_MCU;
    unsigned char   *lpJpegBuf = NULL;
    unsigned char   *lp;
    short   qt_table[3][64];
    short   comp_num;
    BYTE   comp_index[3];
    BYTE      YDcIndex, YAcIndex, UVDcIndex, UVAcIndex;
    BYTE   HufTabIndex;
    short      *YQtTable, *UQtTable, *VQtTable;
    short      code_pos_table[4][16], code_len_table[4][16];
    unsigned short code_value_table[4][256];
    unsigned short huf_max_value[4][16], huf_min_value[4][16];
    short   BitPos, CurByte;
    short   rrun, vvalue;
    short   MCUBuffer[10 * 64];
    int    QtZzMCUBuffer[10 * 64];
    short   BlockBuffer[64];
    short   ycoef, ucoef, vcoef;
    BOOL   IntervalFlag;
    short   interval = 0;
    int    Y[4 * 64], U[4 * 64], V[4 * 64];
    DWORD      sizei, sizej;
    short    restart;
};

#define Bitmap CBitmap::getInstance()

2、源文件:

#include "Jpeg2Bmp.h"

#pragma pack(1)
/* constants for the biCompression field */
#define BI_RGB        0L
#define BI_RLE8       1L
#define BI_RLE4       2L
#define BI_BITFIELDS  3L

static  long iclip[1024];
static  long *iclp;
BYTE   And[9] = { 0, 1, 3, 7, 0xf, 0x1f, 0x3f, 0x7f, 0xff };

#define OLD_BMP_PATH "\\oldBmp.bmp"
#define NEW_BMP_PATH "\\newBmp.bmp"

CBitmap::CBitmap(void)
{
}

CBitmap::~CBitmap(void)
{
}

void CBitmap::GetYUV(short flag)
{
    short H, VV;
    short i, j, k, h;
    int  *buf;
    int  *pQtZzMCU;
    buf = Y;
    pQtZzMCU = QtZzMCUBuffer;
    switch (flag) {
    case 0:
        H = SampRate_Y_H;
        VV = SampRate_Y_V;
        buf = Y;
        pQtZzMCU = QtZzMCUBuffer;
        break;
    case 1:
        H = SampRate_U_H;
        VV = SampRate_U_V;
        buf = U;
        pQtZzMCU = QtZzMCUBuffer + Y_in_MCU * 64;
        break;
    case 2:
        H = SampRate_V_H;
        VV = SampRate_V_V;
        buf = V;
        pQtZzMCU = QtZzMCUBuffer + (Y_in_MCU + U_in_MCU) * 64;
        break;
    }
    for (i = 0; i < VV; i++)
        for (j = 0; j < H; j++)
            for (k = 0; k < 8; k++)
                for (h = 0; h < 8; h++)
                    buf[(i * 8 + k)*SampRate_Y_H * 8 + j * 8 + h] = *pQtZzMCU++;
}

void CBitmap::StoreBuffer()
{
    short i, j;
    unsigned char  *lpbmp;
    unsigned char R, G, B;
    int y, u, v, rr, gg, bb;

    for (i = 0; i < SampRate_Y_V * 8; i++) {
        if ((sizei + i) < ImgHeight) {
            lpbmp = ((unsigned char *)lpPtr + (DWORD)(ImgHeight - sizei - i - 1)*LineBytes + sizej * 3);
            for (j = 0; j < SampRate_Y_H * 8; j++) {
                if ((sizej + j) < ImgWidth) {
                    y = Y[i * 8 * SampRate_Y_H + j];
                    u = U[(i / V_YtoU) * 8 * SampRate_Y_H + j / H_YtoU];
                    v = V[(i / V_YtoV) * 8 * SampRate_Y_H + j / H_YtoV];
                    rr = ((y << 8) + 18 * u + 367 * v) >> 8;
                    gg = ((y << 8) - 159 * u - 220 * v) >> 8;
                    bb = ((y << 8) + 411 * u - 29 * v) >> 8;
                    R = (unsigned char)rr;
                    G = (unsigned char)gg;
                    B = (unsigned char)bb;
                    if (rr & 0xffffff00) if (rr > 255) R = 255; else if (rr < 0) R = 0;
                    if (gg & 0xffffff00) if (gg > 255) G = 255; else if (gg < 0) G = 0;
                    if (bb & 0xffffff00) if (bb > 255) B = 255; else if (bb < 0) B = 0;
                    *lpbmp++ = B;
                    *lpbmp++ = G;
                    *lpbmp++ = R;

                }
                else  break;
            }
        }
        else break;
    }
}

void CBitmap::Fast_IDCT(int * block)
{
    short i;

    for (i = 0; i < 8; i++)
        idctrow(block + 8 * i);

    for (i = 0; i < 8; i++)
        idctcol(block + i);
}

string CBitmap::getModulePath()
{
    char szDir[2048] = { 0 };
    ::GetModuleFileNameA(NULL, szDir, sizeof(szDir));

    string strResult = szDir;
    strResult = strResult.substr(0, strResult.find_last_of("\\"));
    return strResult;
}

bool CBitmap::BmpZoom(BITMAPFILEHEADER head, BITMAPINFOHEADER info, unsigned char** pszSrc, unsigned int nSrcLength, unsigned char** pszDst, unsigned int& nDstLength)
{
    printf("BmpZoom~~调用开始!\n");

    bool bReturn = false;
    try
    {
        FILE* file = fopen(string(getModulePath() + OLD_BMP_PATH).c_str(), "wb");
        if (file == NULL)
            throw - 1;

        fwrite(*pszSrc, 1, nSrcLength, file);
        fclose(file);

        FILE *fpr1 = fopen(string(getModulePath() + OLD_BMP_PATH).c_str(), "rb");
        FILE *fpw2 = fopen(string(getModulePath() + NEW_BMP_PATH).c_str(), "wb");
        if (fpr1 == NULL || fpw2 == NULL)
            throw - 2;

        //读取原照片的头信息
        fread(&head, sizeof(BITMAPFILEHEADER), 1, fpr1);
        fread(&info, sizeof(BITMAPINFOHEADER), 1, fpr1);

        unsigned int old_width = info.biWidth;//获取原图片的宽
        unsigned int old_height = info.biHeight;//获取原图片的高

        //获取原图片的位图数据

        printf("BmpZoom~~old_width:%d \n", old_width);
        printf("BmpZoom~~old_height:%d \n", old_height);

        LONG srcDataLen = old_width*old_height * 3;
        printf("BmpZoom~~srcDataLen:%d \n", srcDataLen);

        if (srcDataLen <= 0)
            throw - 3;

        unsigned char *src_data = new unsigned char[srcDataLen];

        if (src_data == NULL)
            throw - 4;

        printf("BmpZoom~~fseek!\n");

        { // 测试文件的大小
            int errer = _fseeki64(fpr1, 0, SEEK_END);
            if (errer != 0)
            {    // 不等0,移动文件光标失败
                printf("Failed to move cursor!(SEEK_END)\n");
                return false;
            }
            // 获得当前文件指针位置,也就是间接获得文件大小
            int fileSize = _ftelli64(fpr1);
            printf("fpr1文件的大小:%d\n ", fileSize);

            if (fileSize <= 54)
                throw - 5;

            errer = _fseeki64(fpr1, 0, SEEK_SET);
            if (errer != 0) 
            {    // 不等0,移动文件光标失败
                printf("Failed to move cursor!(SEEK_END)\n");
                return false;
            }
            fileSize = _ftelli64(fpr1);
        }

        fseek(fpr1, 54, SEEK_SET);//向后偏移,就算超出文件,也只是指在文件尾部,不会返回-1

        fread(src_data, old_width*old_height * 3, 1, fpr1);
        fclose(fpr1);

        printf("原图片的宽:%d\n", old_width);
        printf("原图片的高:%d\n", old_height);

        //修改原照片的宽高
        unsigned int new_Width, new_Height;
        old_width > 480 ? new_Width = 480 : new_Width = old_width;
        old_height > 300 ? new_Height = 300 : new_Height = old_height;

        unsigned int newSize = new_Width * new_Height * 3;
        head.bfSize = newSize + 54;
        info.biWidth = new_Width;
        info.biHeight = new_Height;

        //将修改过的头信息写进新照片
        fwrite(&head, sizeof(BITMAPFILEHEADER), 1, fpw2);
        fwrite(&info, sizeof(BITMAPINFOHEADER), 1, fpw2);

        unsigned int i = 0, j = 0;
        unsigned long dwsrcX, dwsrcY;
        unsigned char *pucDest;
        unsigned char *pucSrc;
        unsigned char *dest_data = new unsigned char[newSize];
        for (i = 0; i < new_Height; i++)
        {
            dwsrcY = i * old_height / new_Height;
            pucDest = dest_data + i * new_Width * 3;
            pucSrc = src_data + dwsrcY * old_width * 3;
            for (j = 0; j < new_Width; j++)
            {
                dwsrcX = j * old_width / new_Width;
                memcpy(pucDest + j * 3, pucSrc + dwsrcX * 3, 3);//数据拷贝
            }
        }

        fseek(fpw2, 54, SEEK_SET);

        fwrite(dest_data, newSize, 1, fpw2);
        printf("生成 压缩bmp图片 成功!\n");
        fclose(fpw2);

        nDstLength = sizeof(BITMAPFILEHEADER) + sizeof(BITMAPINFOHEADER) + newSize;
        *pszDst = new unsigned char[nDstLength];

        unsigned char* tmpData = *pszDst;
        memcpy_s(tmpData, sizeof(BITMAPFILEHEADER), &head, sizeof(BITMAPFILEHEADER));
        tmpData += sizeof(BITMAPFILEHEADER);
        memcpy_s(tmpData, sizeof(BITMAPINFOHEADER), &info, sizeof(BITMAPINFOHEADER));
        tmpData += sizeof(BITMAPINFOHEADER);
        memcpy_s(tmpData, newSize, dest_data, newSize);

        //释放堆空间
        delete[] dest_data;
        dest_data = NULL;

        delete[] src_data;
        src_data = NULL;

        return true;
    }
    catch (int& iErrorCode)
    {
        switch (iErrorCode)
        {
        case -1:
            printf("生成old bmp文件 失败!\n");
            break;
        case -2:
            printf("打开old bmp文件 失败 or 生成new bmp文件 失败!\n");
            break;
        case -3:
            printf("BmpZoom~~srcDataLen <=0 返回!\n");
            break;
        case -4:
            printf("BmpZoom~~src_data 申请内存失败!\n");
            break;
        case -5:
            printf("fpr1文件的大小,小于54,返回\n");
            break;
        }
    }

    return bReturn;
}

bool CBitmap::Jpeg2Bmp(const char* pszSrc, int nSrcLength, unsigned char** pszDst, unsigned int& nDstLength)
{
    FILE*      hfjpg;//打开原本jpg格式的文件
    DWORD      ImgSize;
    DWORD      BufSize, JpegBufSize;
    FILE*      hfbmp;//生成目标bmp文件
    unsigned char * hJpegBuf = NULL;//存储原本jpg格式的文件数据
    unsigned char * hImgData = NULL;//存储新的数据的变量

    int        funcret;
    LPBITMAPINFOHEADER lpImgData;
    BITMAPFILEHEADER   bf;//描述位图文件头的结构体
    BITMAPINFOHEADER   bi;//描述位图文件头信息的结构体

    printf("传进来的图片路径:%s\n", pszSrc);
    errno_t err = fopen_s(&hfjpg, pszSrc, "rb");//正确返回0,不正确返回非0
    if (err != 0)
    {
        printf("文件打开失败\n");
    }

    //get jpg file length
    fseek(hfjpg, 0L, SEEK_END);
    JpegBufSize = ftell(hfjpg);
    printf("原本图片数据(JpegBufSize)大小:%d\n", JpegBufSize);

    //rewind to the beginning of the file
    fseek(hfjpg, 0L, SEEK_SET);

    hJpegBuf = new unsigned char[JpegBufSize];

    if (hJpegBuf == NULL)
    {
        printf("存储原本jpg格式的文件数据(hJpegBuf) 分配内存失败,返回\n");
        return false;
    }

    lpJpegBuf = hJpegBuf;//多一个变量指向这块内存

    fread(hJpegBuf, sizeof(char), JpegBufSize, hfjpg);
    fclose(hfjpg);

    InitTable();

    if ((funcret = InitTag()) != FUNC_OK)
    {
        delete[] hJpegBuf;
        hJpegBuf = NULL;
        return false;
    }

    //create new bitmapfileheader and bitmapinfoheader
    memset((char *)&bf, 0, sizeof(BITMAPFILEHEADER));
    memset((char *)&bi, 0, sizeof(BITMAPINFOHEADER));

    bi.biSize = (DWORD)sizeof(BITMAPINFOHEADER);
    bi.biWidth = (LONG)(ImgWidth);
    bi.biHeight = (LONG)(ImgHeight);
    bi.biPlanes = 1;
    bi.biBitCount = 24;
    bi.biClrUsed = 0;
    bi.biClrImportant = 0;
    bi.biCompression = BI_RGB;
    NumColors = 0;
    LineBytes = (DWORD)WIDTHBYTES(bi.biWidth*bi.biBitCount);
    ImgSize = (DWORD)LineBytes*bi.biHeight;
    bf.bfType = 0x4d42;

    printf("描述位图文件头的结构体(BITMAPFILEHEADER):%d\n", sizeof(BITMAPFILEHEADER));//如果没有#pragma pack(1),sizeof(BITMAPFILEHEADER)是16
    printf("描述位图文件头信息的结构体(BITMAPINFOHEADER):%d\n", sizeof(BITMAPINFOHEADER));
    printf("NumColors * sizeof(RGBQUAD):%d\n", NumColors * sizeof(RGBQUAD));

    bf.bfSize = sizeof(BITMAPFILEHEADER) + sizeof(BITMAPINFOHEADER) + NumColors * sizeof(RGBQUAD) + ImgSize;
    bf.bfOffBits = 54;//位图数据的偏移量,即位图文件头和位图信息头之后的字节数
    BufSize = bf.bfSize - sizeof(BITMAPFILEHEADER); //描述位图文件头的结构体,文件头的结构体的大小是固定的,所以先减去,后面直接复制文件头的结构体即可

    printf("文件大小(bf.bfSize):%d\n", bf.bfSize);
    printf("文件大小 - 位图文件头的结构体 = BufSize:%d\n", BufSize);

    if (BufSize <= 0)
    {
        delete[] hJpegBuf;
        hJpegBuf = NULL;
        return FALSE;
    }

    hImgData = new unsigned char[BufSize];
    if (hImgData == NULL)
    {
        printf("hImgData 申请内存失败!\n");

        delete[] hJpegBuf;
        hJpegBuf = NULL;
        return FALSE;
    }

    printf("存储新的数据的变量(hImgData) 申请内存成功!\n");
    lpImgData = (LPBITMAPINFOHEADER)hImgData;

    printf("sizeof(BITMAPINFOHEADER):%d\n", sizeof(BITMAPINFOHEADER));
    printf("sizeof(bi):%d\n", sizeof(bi));
    memcpy(lpImgData, (char *)&bi, sizeof(BITMAPINFOHEADER));//描述位图文件头信息的结构体

    if (lpImgData==NULL)
    {
        printf("lpImgData = NULL 返回 \n");
        return false;
    }
    printf("sizeof(lpImgData):%d\n", sizeof(lpImgData));

    lpPtr = (char *)lpImgData + sizeof(BITMAPINFOHEADER);//mencpy完,指针往后移,并赋给新的全局指针(其他函数做一些格式转换处理)

    if ((SampRate_Y_H == 0) || (SampRate_Y_V == 0))
    {
        delete[] hJpegBuf;
        hJpegBuf = NULL;

        delete[] hImgData;
        hImgData = NULL;

        printf("(SampRate_Y_H == 0) || (SampRate_Y_V == 0) 失败,返回\n");
        return false;
    }

    printf("Decode接口,调用开始\n");
    funcret = Decode();//格式转换的主要函数
    printf("Decode接口,调用结束\n");

    bool retOK = false;
    if (funcret == FUNC_OK)
    {
        //生成bmp图片(可以不生成这个文件的,只是为了看)
        fopen_s(&hfbmp, string(getModulePath() + "\\jpeg2bmp.bmp").c_str(), "wb");
        fwrite((LPSTR)&bf, sizeof(BITMAPFILEHEADER), 1, hfbmp);
        fwrite((LPSTR)lpImgData, sizeof(char), BufSize, hfbmp);
        fclose(hfbmp);
        printf(" 生成目标 bmp 图片成功 \n");

        {
            //bmp图片转为二进制
            unsigned int nSrcLength = BufSize + sizeof(BITMAPFILEHEADER);//生成目标bmp文件的大小
            printf("生成目标bmp文件的大小(nSrcLength):%d\n", nSrcLength);

            unsigned char *pszSrcZoom = new unsigned char[nSrcLength]; //申请内存,主要是想把bmp文件的数据读出来
            if (pszSrcZoom == NULL)
            {
                printf("pszSrcZoom 申请内存失败!\n");

                delete[] hJpegBuf;
                hJpegBuf = NULL;

                delete[] hImgData;
                hImgData = NULL;

                return false;
            }

            unsigned char* tmpData = pszSrcZoom;

            memcpy_s(tmpData, sizeof(BITMAPFILEHEADER), &bf, sizeof(BITMAPFILEHEADER));//位图的文件头结构体
            tmpData += sizeof(BITMAPFILEHEADER);//指针往后移

            memcpy_s(tmpData, BufSize, lpImgData, BufSize);//复制bmp的数据

            printf("测试 ~~~~aaaaaaaaaaaaa\n");

            unsigned char* pszDstZoom = NULL;//存bmp图片压缩后的数据
            bool retBmpZoom = BmpZoom(bf, *lpImgData, &pszSrcZoom, nSrcLength, &pszDstZoom, nDstLength);

            if (pszSrcZoom != NULL)
            {
                delete[] pszSrcZoom;
                pszSrcZoom = NULL;
            }

            if (retBmpZoom && pszDstZoom != NULL)
            {
                *pszDst = new unsigned char[nDstLength];
                if (*pszDst == NULL)
                {
                    printf("*pszDst 申请内存失败!\n");

                    delete[] hJpegBuf;
                    hJpegBuf = NULL;
                    delete[] hImgData;
                    hImgData = NULL;

                    return false;
                }

                memcpy_s(*pszDst, nDstLength, pszDstZoom, nDstLength);
                delete[] pszDstZoom;
                pszDstZoom = NULL;

                retOK = true;
            }
        }

    }

    delete[] hJpegBuf;
    hJpegBuf = NULL;

    delete[] hImgData;
    hImgData = NULL;

    retOK ? printf("retBmpZoom压缩成功!\n") : printf("retBmpZoom压缩失败!\n");
    return retOK;
}

int CBitmap::InitTag()
{
    BOOL finish = FALSE;
    BYTE id;
    short  llength;
    short  i, j, k;
    short  huftab1, huftab2;
    short  huftabindex;
    BYTE hf_table_index;
    BYTE qt_table_index;
    BYTE comnum;

    unsigned char  *lptemp;
    short  ccount;

    lp = lpJpegBuf + 2;

    while (!finish) {
        id = *(lp + 1);
        lp += 2;
        switch (id) {
        case M_APP0:
            llength = MAKEWORD(*(lp + 1), *lp);
            lp += llength;
            break;
        case M_DQT:
            llength = MAKEWORD(*(lp + 1), *lp);
            qt_table_index = (*(lp + 2)) & 0x0f;
            lptemp = lp + 3;
            if (llength < 80) {
                for (i = 0; i < 64; i++)
                    qt_table[qt_table_index][i] = (short)*(lptemp++);
            }
            else {
                for (i = 0; i < 64; i++)
                    qt_table[qt_table_index][i] = (short)*(lptemp++);
                qt_table_index = (*(lptemp++)) & 0x0f;
                for (i = 0; i < 64; i++)
                    qt_table[qt_table_index][i] = (short)*(lptemp++);
            }
            lp += llength;
            break;
        case M_SOF0:
            llength = MAKEWORD(*(lp + 1), *lp);
            ImgHeight = MAKEWORD(*(lp + 4), *(lp + 3));
            ImgWidth = MAKEWORD(*(lp + 6), *(lp + 5));
            comp_num = *(lp + 7);
            if ((comp_num != 1) && (comp_num != 3))
                return FUNC_FORMAT_ERROR;
            if (comp_num == 3) {
                comp_index[0] = *(lp + 8);
                SampRate_Y_H = (*(lp + 9)) >> 4;
                SampRate_Y_V = (*(lp + 9)) & 0x0f;
                YQtTable = (short *)qt_table[*(lp + 10)];

                comp_index[1] = *(lp + 11);
                SampRate_U_H = (*(lp + 12)) >> 4;
                SampRate_U_V = (*(lp + 12)) & 0x0f;
                UQtTable = (short *)qt_table[*(lp + 13)];

                comp_index[2] = *(lp + 14);
                SampRate_V_H = (*(lp + 15)) >> 4;
                SampRate_V_V = (*(lp + 15)) & 0x0f;
                VQtTable = (short *)qt_table[*(lp + 16)];
            }
            else {
                comp_index[0] = *(lp + 8);
                SampRate_Y_H = (*(lp + 9)) >> 4;
                SampRate_Y_V = (*(lp + 9)) & 0x0f;
                YQtTable = (short *)qt_table[*(lp + 10)];

                comp_index[1] = *(lp + 8);
                SampRate_U_H = 1;
                SampRate_U_V = 1;
                UQtTable = (short *)qt_table[*(lp + 10)];

                comp_index[2] = *(lp + 8);
                SampRate_V_H = 1;
                SampRate_V_V = 1;
                VQtTable = (short *)qt_table[*(lp + 10)];
            }
            lp += llength;
            break;
        case M_DHT:
            llength = MAKEWORD(*(lp + 1), *lp);
            if (llength < 0xd0) {
                huftab1 = (short)(*(lp + 2)) >> 4;     //huftab1=0,1
                huftab2 = (short)(*(lp + 2)) & 0x0f;   //huftab2=0,1
                huftabindex = huftab1 * 2 + huftab2;
                lptemp = lp + 3;
                for (i = 0; i < 16; i++)
                    code_len_table[huftabindex][i] = (short)(*(lptemp++));
                j = 0;
                for (i = 0; i < 16; i++)
                    if (code_len_table[huftabindex][i] != 0) {
                        k = 0;
                        while (k < code_len_table[huftabindex][i]) {
                            code_value_table[huftabindex][k + j] = (short)(*(lptemp++));
                            k++;
                        }
                        j += k;
                    }
                i = 0;
                while (code_len_table[huftabindex][i] == 0)
                    i++;
                for (j = 0; j < i; j++) {
                    huf_min_value[huftabindex][j] = 0;
                    huf_max_value[huftabindex][j] = 0;
                }
                huf_min_value[huftabindex][i] = 0;
                huf_max_value[huftabindex][i] = code_len_table[huftabindex][i] - 1;
                for (j = i + 1; j < 16; j++) {
                    huf_min_value[huftabindex][j] = (huf_max_value[huftabindex][j - 1] + 1) << 1;
                    huf_max_value[huftabindex][j] = huf_min_value[huftabindex][j] + code_len_table[huftabindex][j] - 1;
                }
                code_pos_table[huftabindex][0] = 0;
                for (j = 1; j < 16; j++)
                    code_pos_table[huftabindex][j] = code_len_table[huftabindex][j - 1] + code_pos_table[huftabindex][j - 1];
                lp += llength;
            }  //if
            else {
                hf_table_index = *(lp + 2);
                lp += 2;
                while (hf_table_index != 0xff) {
                    huftab1 = (short)hf_table_index >> 4;     //huftab1=0,1
                    huftab2 = (short)hf_table_index & 0x0f;   //huftab2=0,1
                    huftabindex = huftab1 * 2 + huftab2;
                    lptemp = lp + 1;
                    ccount = 0;
                    for (i = 0; i < 16; i++) {
                        code_len_table[huftabindex][i] = (short)(*(lptemp++));
                        ccount += code_len_table[huftabindex][i];
                    }
                    ccount += 17;
                    j = 0;
                    for (i = 0; i < 16; i++)
                        if (code_len_table[huftabindex][i] != 0) {
                            k = 0;
                            while (k < code_len_table[huftabindex][i])
                            {
                                code_value_table[huftabindex][k + j] = (short)(*(lptemp++));
                                k++;
                            }
                            j += k;
                        }
                    i = 0;
                    while (code_len_table[huftabindex][i] == 0)
                        i++;
                    for (j = 0; j < i; j++) {
                        huf_min_value[huftabindex][j] = 0;
                        huf_max_value[huftabindex][j] = 0;
                    }
                    huf_min_value[huftabindex][i] = 0;
                    huf_max_value[huftabindex][i] = code_len_table[huftabindex][i] - 1;
                    for (j = i + 1; j < 16; j++) {
                        huf_min_value[huftabindex][j] = (huf_max_value[huftabindex][j - 1] + 1) << 1;
                        huf_max_value[huftabindex][j] = huf_min_value[huftabindex][j] + code_len_table[huftabindex][j] - 1;
                    }
                    code_pos_table[huftabindex][0] = 0;
                    for (j = 1; j < 16; j++)
                        code_pos_table[huftabindex][j] = code_len_table[huftabindex][j - 1] + code_pos_table[huftabindex][j - 1];
                    lp += ccount;
                    hf_table_index = *lp;
                }  //while
            }  //else
            break;
        case M_DRI:
            llength = MAKEWORD(*(lp + 1), *lp);
            restart = MAKEWORD(*(lp + 3), *(lp + 2));
            lp += llength;
            break;
        case M_SOS:
            llength = MAKEWORD(*(lp + 1), *lp);
            comnum = *(lp + 2);
            if (comnum != comp_num)
                return FUNC_FORMAT_ERROR;
            lptemp = lp + 3;
            for (i = 0; i < comp_num; i++) {
                if (*lptemp == comp_index[0]) {
                    YDcIndex = (*(lptemp + 1)) >> 4;   //Y
                    YAcIndex = ((*(lptemp + 1)) & 0x0f) + 2;
                }
                else {
                    UVDcIndex = (*(lptemp + 1)) >> 4;   //U,V
                    UVAcIndex = ((*(lptemp + 1)) & 0x0f) + 2;
                }
                lptemp += 2;
            }
            lp += llength;
            finish = TRUE;
            break;
        case M_EOI:
            return FUNC_FORMAT_ERROR;
            break;
        default:
            if ((id & 0xf0) != 0xd0) {
                llength = MAKEWORD(*(lp + 1), *lp);
                lp += llength;
            }
            else lp += 2;
            break;
        }  //switch
    } //while
    return FUNC_OK;
}

void CBitmap::InitTable()
{
    short i, j;
    sizei = sizej = 0;
    ImgWidth = ImgHeight = 0;
    rrun = vvalue = 0;
    BitPos = 0;
    CurByte = 0;
    IntervalFlag = FALSE;
    restart = 0;
    for (i = 0; i < 3; i++)
        for (j = 0; j < 64; j++)
            qt_table[i][j] = 0;
    comp_num = 0;
    HufTabIndex = 0;
    for (i = 0; i < 3; i++)
        comp_index[i] = 0;
    for (i = 0; i < 4; i++)
        for (j = 0; j < 16; j++) {
            code_len_table[i][j] = 0;
            code_pos_table[i][j] = 0;
            huf_max_value[i][j] = 0;
            huf_min_value[i][j] = 0;
        }
    for (i = 0; i < 4; i++)
        for (j = 0; j < 256; j++)
            code_value_table[i][j] = 0;

    for (i = 0; i < 10 * 64; i++) {
        MCUBuffer[i] = 0;
        QtZzMCUBuffer[i] = 0;
    }
    for (i = 0; i < 64; i++) {
        Y[i] = 0;
        U[i] = 0;
        V[i] = 0;
        BlockBuffer[i] = 0;
    }
    ycoef = ucoef = vcoef = 0;
}

int CBitmap::Decode()
{
    int funcret;

    Y_in_MCU = SampRate_Y_H * SampRate_Y_V;
    U_in_MCU = SampRate_U_H * SampRate_U_V;
    V_in_MCU = SampRate_V_H * SampRate_V_V;
    H_YtoU = SampRate_Y_H / SampRate_U_H;
    V_YtoU = SampRate_Y_V / SampRate_U_V;
    H_YtoV = SampRate_Y_H / SampRate_V_H;
    V_YtoV = SampRate_Y_V / SampRate_V_V;
    Initialize_Fast_IDCT();
    while ((funcret = DecodeMCUBlock()) == FUNC_OK) {
        interval++;
        if ((restart) && (interval % restart == 0))
            IntervalFlag = TRUE;
        else
            IntervalFlag = FALSE;
        IQtIZzMCUComponent(0);
        IQtIZzMCUComponent(1);
        IQtIZzMCUComponent(2);
        GetYUV(0);
        GetYUV(1);
        GetYUV(2);
        StoreBuffer();
        sizej += SampRate_Y_H * 8;
        if (sizej >= ImgWidth) {
            sizej = 0;
            sizei += SampRate_Y_V * 8;
        }
        if ((sizej == 0) && (sizei >= ImgHeight))
            break;
    }
    return funcret;
}

int CBitmap::DecodeMCUBlock()
{
    short *lpMCUBuffer;
    short i, j;
    int funcret;

    if (IntervalFlag) {
        lp += 2;
        ycoef = ucoef = vcoef = 0;
        BitPos = 0;
        CurByte = 0;
    }
    switch (comp_num) {
    case 3:
        lpMCUBuffer = MCUBuffer;
        for (i = 0; i < SampRate_Y_H*SampRate_Y_V; i++)  //Y
        {
            funcret = HufBlock(YDcIndex, YAcIndex);
            if (funcret != FUNC_OK)
                return funcret;
            BlockBuffer[0] = BlockBuffer[0] + ycoef;
            ycoef = BlockBuffer[0];
            for (j = 0; j < 64; j++)
                *lpMCUBuffer++ = BlockBuffer[j];
        }
        for (i = 0; i < SampRate_U_H*SampRate_U_V; i++)  //U
        {
            funcret = HufBlock(UVDcIndex, UVAcIndex);
            if (funcret != FUNC_OK)
                return funcret;
            BlockBuffer[0] = BlockBuffer[0] + ucoef;
            ucoef = BlockBuffer[0];
            for (j = 0; j < 64; j++)
                *lpMCUBuffer++ = BlockBuffer[j];
        }
        for (i = 0; i < SampRate_V_H*SampRate_V_V; i++)  //V
        {
            funcret = HufBlock(UVDcIndex, UVAcIndex);
            if (funcret != FUNC_OK)
                return funcret;
            BlockBuffer[0] = BlockBuffer[0] + vcoef;
            vcoef = BlockBuffer[0];
            for (j = 0; j < 64; j++)
                *lpMCUBuffer++ = BlockBuffer[j];
        }
        break;
    case 1:
        lpMCUBuffer = MCUBuffer;
        funcret = HufBlock(YDcIndex, YAcIndex);
        if (funcret != FUNC_OK)
            return funcret;
        BlockBuffer[0] = BlockBuffer[0] + ycoef;
        ycoef = BlockBuffer[0];
        for (j = 0; j < 64; j++)
            *lpMCUBuffer++ = BlockBuffer[j];
        for (i = 0; i < 128; i++)
            *lpMCUBuffer++ = 0;
        break;
    default:
        return FUNC_FORMAT_ERROR;
    }
    return FUNC_OK;
}

int CBitmap::HufBlock(BYTE dchufindex, BYTE achufindex)
{
    short count = 0;
    short i;
    int funcret;

    //dc
    HufTabIndex = dchufindex;
    funcret = DecodeElement();
    if (funcret != FUNC_OK)
        return funcret;

    BlockBuffer[count++] = vvalue;
    //ac
    HufTabIndex = achufindex;
    while (count < 64) {
        funcret = DecodeElement();
        if (funcret != FUNC_OK)
            return funcret;
        if ((rrun == 0) && (vvalue == 0)) {
            for (i = count; i < 64; i++)
                BlockBuffer[i] = 0;
            count = 64;
        }
        else {
            for (i = 0; i < rrun; i++)
                BlockBuffer[count++] = 0;
            BlockBuffer[count++] = vvalue;
        }
    }
    return FUNC_OK;
}

int CBitmap::DecodeElement()
{
    int thiscode, tempcode;
    unsigned short temp, valueex;
    short codelen;
    BYTE hufexbyte, runsize, tempsize, sign;
    BYTE newbyte, lastbyte;

    if (BitPos >= 1) {
        BitPos--;
        thiscode = (BYTE)CurByte >> BitPos;
        CurByte = CurByte & And[BitPos];
    }
    else {
        lastbyte = ReadByte();
        BitPos--;
        newbyte = CurByte & And[BitPos];
        thiscode = lastbyte >> 7;
        CurByte = newbyte;
    }
    codelen = 1;
    while ((thiscode < huf_min_value[HufTabIndex][codelen - 1]) ||
        (code_len_table[HufTabIndex][codelen - 1] == 0) ||
        (thiscode > huf_max_value[HufTabIndex][codelen - 1]))
    {
        if (BitPos >= 1) {
            BitPos--;
            tempcode = (BYTE)CurByte >> BitPos;
            CurByte = CurByte & And[BitPos];
        }
        else {
            lastbyte = ReadByte();
            BitPos--;
            newbyte = CurByte & And[BitPos];
            tempcode = (BYTE)lastbyte >> 7;
            CurByte = newbyte;
        }
        thiscode = (thiscode << 1) + tempcode;
        codelen++;
        if (codelen > 16)
            return FUNC_FORMAT_ERROR;
    }  //while
    temp = thiscode - huf_min_value[HufTabIndex][codelen - 1] + code_pos_table[HufTabIndex][codelen - 1];
    hufexbyte = (BYTE)code_value_table[HufTabIndex][temp];
    rrun = (short)(hufexbyte >> 4);
    runsize = hufexbyte & 0x0f;
    if (runsize == 0) {
        vvalue = 0;
        return FUNC_OK;
    }
    tempsize = runsize;
    if (BitPos >= runsize) {
        BitPos -= runsize;
        valueex = (BYTE)CurByte >> BitPos;
        CurByte = CurByte & And[BitPos];
    }
    else {
        valueex = CurByte;
        tempsize -= BitPos;
        while (tempsize > 8) {
            lastbyte = ReadByte();
            valueex = (valueex << 8) + (BYTE)lastbyte;
            tempsize -= 8;
        }  //while
        lastbyte = ReadByte();
        BitPos -= tempsize;
        valueex = (valueex << tempsize) + (lastbyte >> BitPos);
        CurByte = lastbyte & And[BitPos];
    }  //else
    sign = valueex >> (runsize - 1);
    if (sign)
        vvalue = valueex;
    else {
        valueex = valueex ^ 0xffff;
        temp = 0xffff << runsize;
        vvalue = -(short)(valueex^temp);
    }
    return FUNC_OK;
}

void CBitmap::IQtIZzMCUComponent(short flag)
{
    short H, VV;
    short i, j;
    int *pQtZzMCUBuffer;
    short  *pMCUBuffer;
    pMCUBuffer = MCUBuffer;
    pQtZzMCUBuffer = QtZzMCUBuffer;
    switch (flag) {
    case 0:
        H = SampRate_Y_H;
        VV = SampRate_Y_V;
        pMCUBuffer = MCUBuffer;
        pQtZzMCUBuffer = QtZzMCUBuffer;
        break;
    case 1:
        H = SampRate_U_H;
        VV = SampRate_U_V;
        pMCUBuffer = MCUBuffer + Y_in_MCU * 64;
        pQtZzMCUBuffer = QtZzMCUBuffer + Y_in_MCU * 64;
        break;
    case 2:
        H = SampRate_V_H;
        VV = SampRate_V_V;
        pMCUBuffer = MCUBuffer + (Y_in_MCU + U_in_MCU) * 64;
        pQtZzMCUBuffer = QtZzMCUBuffer + (Y_in_MCU + U_in_MCU) * 64;
        break;
    }
    for (i = 0; i < VV; i++)
        for (j = 0; j < H; j++)
            IQtIZzBlock(pMCUBuffer + (i*H + j) * 64, pQtZzMCUBuffer + (i*H + j) * 64, flag);
}

void CBitmap::IQtIZzBlock(short  *s, int * d, short flag)
{
    short i, j;
    short tag;
    short *pQt;
    int buffer2[8][8];
    int *buffer1;
    short offset;
    pQt = YQtTable;
    switch (flag) {
    case 0:
        pQt = YQtTable;
        offset = 128;
        break;
    case 1:
        pQt = UQtTable;
        offset = 0;
        break;
    case 2:
        pQt = VQtTable;
        offset = 0;
        break;
    }

    for (i = 0; i < 8; i++)
        for (j = 0; j < 8; j++) {
            tag = Zig_Zag[i][j];
            buffer2[i][j] = (int)s[tag] * (int)pQt[tag];
        }
    buffer1 = (int *)buffer2;
    Fast_IDCT(buffer1);
    for (i = 0; i < 8; i++)
        for (j = 0; j < 8; j++)
            d[i * 8 + j] = buffer2[i][j] + offset;
}

BYTE CBitmap::ReadByte()
{
    BYTE  i;

    i = *(lp++);
    if (i == 0xff)
        lp++;
    BitPos = 8;
    CurByte = i;
    return i;
}

void CBitmap::Initialize_Fast_IDCT()
{
    short i;

    iclp = iclip + 512;
    for (i = -512; i < 512; i++)
        iclp[i] = (i < -256) ? -256 : ((i > 255) ? 255 : i);
}

void CBitmap::idctrow(int * blk)
{
    int x0, x1, x2, x3, x4, x5, x6, x7, x8;
    //intcut
    if (!((x1 = blk[4] << 11) | (x2 = blk[6]) | (x3 = blk[2]) |
        (x4 = blk[1]) | (x5 = blk[7]) | (x6 = blk[5]) | (x7 = blk[3])))
    {
        blk[0] = blk[1] = blk[2] = blk[3] = blk[4] = blk[5] = blk[6] = blk[7] = blk[0] << 3;
        return;
    }
    x0 = (blk[0] << 11) + 128; // for proper rounding in the fourth stage 
    //first stage
    x8 = W7 * (x4 + x5);
    x4 = x8 + (W1 - W7)*x4;
    x5 = x8 - (W1 + W7)*x5;
    x8 = W3 * (x6 + x7);
    x6 = x8 - (W3 - W5)*x6;
    x7 = x8 - (W3 + W5)*x7;
    //second stage
    x8 = x0 + x1;
    x0 -= x1;
    x1 = W6 * (x3 + x2);
    x2 = x1 - (W2 + W6)*x2;
    x3 = x1 + (W2 - W6)*x3;
    x1 = x4 + x6;
    x4 -= x6;
    x6 = x5 + x7;
    x5 -= x7;
    //third stage
    x7 = x8 + x3;
    x8 -= x3;
    x3 = x0 + x2;
    x0 -= x2;
    x2 = (181 * (x4 + x5) + 128) >> 8;
    x4 = (181 * (x4 - x5) + 128) >> 8;
    //fourth stage
    blk[0] = (x7 + x1) >> 8;
    blk[1] = (x3 + x2) >> 8;
    blk[2] = (x0 + x4) >> 8;
    blk[3] = (x8 + x6) >> 8;
    blk[4] = (x8 - x6) >> 8;
    blk[5] = (x0 - x4) >> 8;
    blk[6] = (x3 - x2) >> 8;
    blk[7] = (x7 - x1) >> 8;
}

void CBitmap::idctcol(int * blk)
{
    int x0, x1, x2, x3, x4, x5, x6, x7, x8;
    //intcut
    if (!((x1 = (blk[8 * 4] << 8)) | (x2 = blk[8 * 6]) | (x3 = blk[8 * 2]) |
        (x4 = blk[8 * 1]) | (x5 = blk[8 * 7]) | (x6 = blk[8 * 5]) | (x7 = blk[8 * 3])))
    {
        blk[8 * 0] = blk[8 * 1] = blk[8 * 2] = blk[8 * 3] = blk[8 * 4] = blk[8 * 5]
            = blk[8 * 6] = blk[8 * 7] = iclp[(blk[8 * 0] + 32) >> 6];
        return;
    }
    x0 = (blk[8 * 0] << 8) + 8192;
    //first stage
    x8 = W7 * (x4 + x5) + 4;
    x4 = (x8 + (W1 - W7)*x4) >> 3;
    x5 = (x8 - (W1 + W7)*x5) >> 3;
    x8 = W3 * (x6 + x7) + 4;
    x6 = (x8 - (W3 - W5)*x6) >> 3;
    x7 = (x8 - (W3 + W5)*x7) >> 3;
    //second stage
    x8 = x0 + x1;
    x0 -= x1;
    x1 = W6 * (x3 + x2) + 4;
    x2 = (x1 - (W2 + W6)*x2) >> 3;
    x3 = (x1 + (W2 - W6)*x3) >> 3;
    x1 = x4 + x6;
    x4 -= x6;
    x6 = x5 + x7;
    x5 -= x7;
    //third stage
    x7 = x8 + x3;
    x8 -= x3;
    x3 = x0 + x2;
    x0 -= x2;
    x2 = (181 * (x4 + x5) + 128) >> 8;
    x4 = (181 * (x4 - x5) + 128) >> 8;
    //fourth stage
    blk[8 * 0] = iclp[(x7 + x1) >> 14];
    blk[8 * 1] = iclp[(x3 + x2) >> 14];
    blk[8 * 2] = iclp[(x0 + x4) >> 14];
    blk[8 * 3] = iclp[(x8 + x6) >> 14];
    blk[8 * 4] = iclp[(x8 - x6) >> 14];
    blk[8 * 5] = iclp[(x0 - x4) >> 14];
    blk[8 * 6] = iclp[(x3 - x2) >> 14];
    blk[8 * 7] = iclp[(x7 - x1) >> 14];
}

本文转载自: https://blog.csdn.net/bigger_belief/article/details/130381382
版权归原作者 Ivy_belief 所有, 如有侵权,请联系我们删除。

“BMP图像处理(jpeg转bmp,以及bmp图片缩放,附代码)”的评论:

还没有评论