Qwen2-1.5B-Instruct微调Lora微调
最近做了一个基于Qwen2-1.5B-Instruct模型的比赛,记录一下自己的微调过程。怕自己以后忘了我就手把手一步一步来记录了。
大多数都是给小白看的,如果你是小白建议你用jupyter运行,按照我这个模块一块一块运行,如果你是高手单纯的想找一个训练代码直接看模块10,我在提供了完整代码。
1. 模型下载
一般模型尽量在modelscope上先搜一下,比较这个下载速度真的快。
import torch
from modelscope import snapshot_download, AutoModel, AutoTokenizer
import os
# 第一个参数表示下载模型的型号,第二个参数是下载后存放的缓存地址,第三个表示版本号,默认 master
model_dir = snapshot_download('Qwen/Qwen2-1.5B-Instruct', cache_dir='./', revision='master')
2. 准备工作(高手请忽略,没啥用)
微调的主要工作其实就是数据处理,其他基本就是个架往里放就行。
接下来是一份官网给出的推理的代码,借助这个代码我们来看输入模型的数据格式长什么样。
from modelscope import AutoModelForCausalLM, AutoTokenizer
device ="cuda"# the device to load the model onto
model = AutoModelForCausalLM.from_pretrained("./Qwen2-1.5B-Instruct",
torch_dtype="auto",
device_map="auto")
tokenizer = AutoTokenizer.from_pretrained("qwen/Qwen2-1.5B-Instruct")
prompt ="你好"
messages =[{"role":"system","content":'你是医疗问答助手章鱼哥,你将帮助用户解答基础的医疗问题。'},{"role":"user","content": prompt}]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=512)
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]print(response)
可以打印看看编码后的输入数据长什么样:
'<|im_start|>system\n你是医疗问答助手章鱼哥,你将帮助用户解答基础的医疗问题。<|im_end|>\n<|im_start|>user\n你好<|im_end|>\n<|im_start|>assistant\n'
这里可以看到其实apply_chat_template方法在对函数编码的时候没有给出mask等内容(他这个和智谱轻言的GLM的apply_chat_template就差距很大,在这卡了我半天)所以在数据处理的时候就不能直接用他这个模板。
3. 接下来进入正题吧(导包)
from datasets import Dataset, load_dataset
from transformers import AutoTokenizer, AutoModelForCausalLM, DataCollatorForSeq2Seq, TrainingArguments, Trainer
4. 加载数据
我这里是用了一个医疗问答的csv数据,能了解到这里的应该数据处理不需要细说了吧
dataset = load_dataset("csv", data_files="./问答.csv", split="train")
dataset = dataset.filter(lambda x: x["answer"]isnotNone)
datasets = dataset.train_test_split(test_size=0.1)
5. 数据预处理
tokenizer = AutoTokenizer.from_pretrained("./Qwen2-1.5B-Instruct", trust_remote_code=True)defprocess_func(example):
MAX_LENGTH =768# 最大输入长度,根据你的显存和数据自己调整
input_ids, attention_mask, labels =[],[],[]
instruction = example["question"].strip()# query# instruction = tokenizer.apply_chat_template([{"role": "user", "content": instruction}],# add_generation_prompt=True,# tokenize=True,# ) # '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\nquery<|im_end|>\n<|im_start|>assistant\n'
instruction = tokenizer(f"<|im_start|>system\n你是医学领域的人工助手章鱼哥<|im_end|>\n<|im_start|>user\n{example['question']}<|im_end|>\n<|im_start|>assistant\n",
add_special_tokens=False,)
response = tokenizer(f"{example['answer']}", add_special_tokens=False)# \n response, 缺少eos token
input_ids = instruction["input_ids"]+ response["input_ids"]+[tokenizer.pad_token_id]
attention_mask =(instruction["attention_mask"]+ response["attention_mask"]+[1])
labels =[-100]*len(instruction["input_ids"])+ response["input_ids"]+[tokenizer.pad_token_id]iflen(input_ids)> MAX_LENGTH:
input_ids = input_ids[:MAX_LENGTH]
attention_mask = attention_mask[:MAX_LENGTH]
labels = labels[:MAX_LENGTH]return{"input_ids": input_ids,"attention_mask": attention_mask,"labels": labels
}
tokenized_ds = datasets['train'].map(process_func, remove_columns=['id','question','answer'])
tokenized_ts = datasets['test'].map(process_func, remove_columns=['id','question','answer'])
6. 创建模型
import torch
model = AutoModelForCausalLM.from_pretrained("./Qwen2-1.5B-Instruct", trust_remote_code=True)from peft import LoraConfig, TaskType, get_peft_model, PeftModel
config = LoraConfig(target_modules=["q_proj","k_proj","v_proj","o_proj","gate_proj","up_proj","down_proj"], modules_to_save=["post_attention_layernorm"])# 配置Lora参数
model = get_peft_model(model, config)# 创建Lora模型
7. 配置训练参数
args = TrainingArguments(
output_dir="./chatbot",
per_device_train_batch_size=4,
gradient_accumulation_steps=8,
gradient_checkpointing=True,
logging_steps=300,
num_train_epochs=10,
learning_rate=1e-4,
remove_unused_columns=False,
save_strategy="epoch")# 在这里如果你开起了梯度检查点gradient_checkpointing=True,就必须加上model.enable_input_require_grads(),否则会报一个很难受的错误
model.enable_input_require_grads()
8. 创建训练器
trainer = Trainer(
model=model,
args=args,
train_dataset=tokenized_ds.select(range(5000)),# 我这个数据量很大,我随机抽取5000条训练不然太慢了
data_collator=DataCollatorForSeq2Seq(tokenizer=tokenizer, padding=True),)
9. 开始训练!!!
祝你成功
trainer.train()
10. 完整的.py代码
import torch
from datasets import Dataset, load_dataset
from transformers import AutoTokenizer, AutoModelForCausalLM, DataCollatorForSeq2Seq, TrainingArguments, Trainer
from peft import LoraConfig, TaskType, get_peft_model, PeftModel
dataset = load_dataset("csv", data_files="./问答.csv", split="train")
dataset = dataset.filter(lambda x: x["answer"]isnotNone)
datasets = dataset.train_test_split(test_size=0.1)
tokenizer = AutoTokenizer.from_pretrained("./Qwen2-1.5B-Instruct", trust_remote_code=True)defprocess_func(example):
MAX_LENGTH =768
input_ids, attention_mask, labels =[],[],[]
instruction = example["question"].strip()# query
instruction = tokenizer(f"<|im_start|>system\n你是医学领域的人工助手章鱼哥<|im_end|>\n<|im_start|>user\n{example['question']}<|im_end|>\n<|im_start|>assistant\n",
add_special_tokens=False,)
response = tokenizer(f"{example['answer']}", add_special_tokens=False)# \n response, 缺少eos token
input_ids = instruction["input_ids"]+ response["input_ids"]+[tokenizer.pad_token_id]
attention_mask =(instruction["attention_mask"]+ response["attention_mask"]+[1])
labels =[-100]*len(instruction["input_ids"])+ response["input_ids"]+[tokenizer.pad_token_id]iflen(input_ids)> MAX_LENGTH:
input_ids = input_ids[:MAX_LENGTH]
attention_mask = attention_mask[:MAX_LENGTH]
labels = labels[:MAX_LENGTH]return{"input_ids": input_ids,"attention_mask": attention_mask,"labels": labels
}
tokenized_ds = datasets['train'].map(process_func, remove_columns=['id','question','answer'])
tokenized_ts = datasets['test'].map(process_func, remove_columns=['id','question','answer'])
model = AutoModelForCausalLM.from_pretrained("./Qwen2-1.5B-Instruct", trust_remote_code=True)
config = LoraConfig(target_modules=["q_proj","k_proj","v_proj","o_proj","gate_proj","up_proj","down_proj"], modules_to_save=["post_attention_layernorm"])
model = get_peft_model(model, config)
args = TrainingArguments(
output_dir="./law",
per_device_train_batch_size=4,
gradient_accumulation_steps=16,
gradient_checkpointing=True,
logging_steps=6,
num_train_epochs=10,
learning_rate=1e-4,
remove_unused_columns=False,
save_strategy="epoch")
model.enable_input_require_grads()
trainer = Trainer(
model=model,
args=args,
train_dataset=tokenized_ds.select(range(400)),
data_collator=DataCollatorForSeq2Seq(tokenizer=tokenizer, padding=True),)
trainer.train()
11. 合并Lora推理预测代码
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
defpredict(messages, model, tokenizer):
device ="cuda"
text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
generated_ids = model.generate(model_inputs.input_ids, max_new_tokens=512)
generated_ids =[output_ids[len(input_ids):]for input_ids, output_ids inzip(model_inputs.input_ids, generated_ids)]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]return response
# 加载原下载路径的tokenizer和model
tokenizer = AutoTokenizer.from_pretrained("./Qwen2-1.5B-Instruct/", use_fast=False, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("./Qwen2-1.5B-Instruct/", device_map="auto", torch_dtype=torch.bfloat16)# 加载训练好的Lora模型,将下面的checkpointXXX替换为实际的checkpoint文件名名称
model = PeftModel.from_pretrained(model, model_id="./chatbot/checkpoint-1560")
test_texts ={'instruction':"你是医学领域的人工助手章鱼哥",'input':"嗓子疼,是不是得了流感了"}
instruction = test_texts['instruction']
input_value = test_texts['input']
messages =[{"role":"system","content":f"{instruction}"},{"role":"user","content":f"{input_value}"}]
response = predict(messages, model, tokenizer)print(response)
版权归原作者 十分钟ll 所有, 如有侵权,请联系我们删除。