在图像处理领域中,去马赛克(Demosaicing)是一项关键技术,用于从单色彩滤波阵列(CFA)图像恢复全彩图像。本文将介绍一种简单的线性插值去马赛克算法,并将其从MATLAB代码转换为Python代码。最终结果将展示如何从Bayer格式的图像数据恢复出RGB全彩图像。
什么是马赛克图像?
马赛克图像是一种通过在传感器上覆盖彩色滤光片阵列(CFA)生成的单通道图像。最常见的CFA模式是Bayer模式,其中包括红(R)、绿(G)和蓝(B)三种滤光片,以特定模式排列。去马赛克过程就是从这种单通道图像中恢复出三通道(RGB)的彩色图像。
算法简介
本文实现的去马赛克算法是基于简单线性插值的。它利用邻近像素的值来估计每个像素点的RGB值。具体步骤如下:
- 读取原始Bayer图像数据:从文件中读取Bayer图像数据,并进行必要的格式转换。
- 图像边界扩展:为了方便计算边缘像素的插值,我们对图像进行边界扩展。
- 线性插值计算:根据像素的不同位置(R、G、B),使用邻近像素的值进行插值计算,恢复出RGB图像。
- 显示结果:展示原始Bayer图像和插值后的RGB图像,并与原始彩色图像进行对比。
代码实现
import numpy as npimport matplotlib.pyplot as pltdef read_raw(file_path, bits, width, height): with open(file_path, 'rb') as f: raw_data = np.fromfile(f, dtype=np.uint8) bayer_data = raw_data.reshape((height, width)) return bayer_datadef demosaic(bayer_data, width, height): # 扩展图像以便于计算边缘像素 bayer_padding = np.zeros((height + 2, width + 2), dtype=np.float32) bayer_padding[1:height+1, 1:width+1] = bayer_data bayer_padding[0, :] = bayer_padding[2, :] bayer_padding[height+1, :] = bayer_padding[height, :] bayer_padding[:, 0] = bayer_padding[:, 2] bayer_padding[:, width+1] = bayer_padding[:, width] # 插值的主要代码 im_dst = np.zeros((height + 2, width + 2, 3), dtype=np.float32) for ver in range(1, height + 1): for hor in range(1, width + 1): if (ver % 2 == 1 and hor % 2 == 1): # Red pixel im_dst[ver, hor, 0] = bayer_padding[ver, hor] im_dst[ver, hor, 1] = (bayer_padding[ver-1, hor] + bayer_padding[ver+1, hor] + bayer_padding[ver, hor-1] + bayer_padding[ver, hor+1]) / 4 im_dst[ver, hor, 2] = (bayer_padding[ver-1, hor-1] + bayer_padding[ver-1, hor+1] + bayer_padding[ver+1, hor-1] + bayer_padding[ver+1, hor+1]) / 4 elif (ver % 2 == 0 and hor % 2 == 0): # Blue pixel im_dst[ver, hor, 2] = bayer_padding[ver, hor] im_dst[ver, hor, 1] = (bayer_padding[ver-1, hor] + bayer_padding[ver+1, hor] + bayer_padding[ver, hor-1] + bayer_padding[ver, hor+1]) / 4 im_dst[ver, hor, 0] = (bayer_padding[ver-1, hor-1] + bayer_padding[ver-1, hor+1] + bayer_padding[ver+1, hor-1] + bayer_padding[ver+1, hor+1]) / 4 elif (ver % 2 == 1 and hor % 2 == 0): # Green pixel (on Red row) im_dst[ver, hor, 1] = bayer_padding[ver, hor] im_dst[ver, hor, 0] = (bayer_padding[ver, hor-1] + bayer_padding[ver, hor+1]) / 2 im_dst[ver, hor, 2] = (bayer_padding[ver-1, hor] + bayer_padding[ver+1, hor]) / 2 elif (ver % 2 == 0 and hor % 2 == 1): # Green pixel (on Blue row) im_dst[ver, hor, 1] = bayer_padding[ver, hor] im_dst[ver, hor, 2] = (bayer_padding[ver, hor-1] + bayer_padding[ver, hor+1]) / 2 im_dst[ver, hor, 0] = (bayer_padding[ver-1, hor] + bayer_padding[ver+1, hor]) / 2 im_dst = im_dst[1:height+1, 1:width+1, :] return im_dst# ------------原始格式----------------file_path = '../images/kodim19_8bits_RGGB.raw'bayer_format = 'RGGB'width = 512height = 768bits = 8# --------------------------------------bayer_data = read_raw(file_path, bits, width, height)plt.figure()plt.imshow(bayer_data, cmap='gray')plt.title('raw image')plt.show()im_dst = demosaic(bayer_data, width, height).astype(np.uint8)plt.figure()plt.imshow(im_dst)plt.title('demosaic image')plt.show()org_image = plt.imread('../images/kodim19.png')plt.figure()plt.imshow(org_image)plt.title('org image')plt.show()
### 结果展示:
版权归原作者 大DA_辉 所有, 如有侵权,请联系我们删除。