0


[ 注意力机制 ] 经典网络模型1——SENet 详解与复现

🤵 Author :Horizon Max

编程技巧篇:各种操作小结

🎇 机器视觉篇:会变魔术 OpenCV

💥 深度学习篇:简单入门 PyTorch

🏆 神经网络篇:经典网络模型

💻 算法篇:再忙也别忘了 LeetCode

[ 注意力机制 ] 经典网络模型1——SENet 详解与复现

🚀 Squeeze-and-Excitation Networks

  1. Squeeze

:挤压    

  1. Excitation

:激励 ;

Squeeze-and-Excitation Networks 简称

  1. SENet

,由 Momenta 和 牛津大学 的Jie Hu等人 提出的一种新的网络结构;

目标是通过建模 卷积特征通道之间的相互依赖关系 来提高网络的表示能力;

在2017年最后一届 ImageNet 挑战赛(ILSVRC) classification 任务中获得 冠军,将错误率降低到 2.251% ;

🔗 论文地址:Squeeze-and-Excitation Networks

🚀 SENet 详解

🎨 Squeeze-and-Excitation block

Squeeze-and-Excitation block

Squeeze-and-Excitation block

对于任意给定的变换: Ftr :X → U ,其中 X ∈ R H’xW’xC’ , U ∈ R HxWxC ,Ftr 用作一个卷积算子 ;

🚩 Squeeze: Global Information Embedding

挤压:全局信息嵌入

(1)

  1. Squeeze

:特征U通过 squeeze 压缩操作,将跨空间维度H × W的特征映射进行聚合,生成一个通道描述符,

  1. HxWxC 1x1xC


将 全局空间信息 压缩到上述 通道描述符 中,使来这些 通道描述符 可以被 其输入的层 利用,这里采用的是

  1. global average pooling

Squeeze

🚩 Excitation: Adaptive Recalibration

激励:自适应调整

(2)

  1. Excitation

:每个通道通过一个 基于通道依赖 的自选门机制 来学习特定样本的激活,使其学会使用全局信息,有选择地强调信息特征,并抑制不太有用的特征,这里采用的是

  1. sigmoid

,并在中间嵌入了

  1. ReLU

函数用于限制模型的复杂性和帮助训练 ;

通过

  1. 两个全连接层(FC)

构成的瓶颈来参数化门控机制,即

  1. W1

用于降低维度,

  1. W2

用于维度递增 ;

Excitation

(3)

  1. Reweight

:将 Excitation 输出的权重通过乘法逐通道加权到输入特征上;

总的来说

  1. SE Block

就是在 Layer 的输入和输出之间添加结构:

  1. global average pooling

-

  1. FC

-

  1. ReLU

-

  1. FC

-

  1. sigmoid

  1. SE block

的灵活性意味着它可以直接应用于标准卷积以外的转换,通过将 SE block 集成到任何复杂模型当中来开发SENet;

🚩 在非残差网络中的应用

应用于 非残差网络 Inception network 当中,形成

  1. SE-Inception module

非残差网络结构框图(Inception block)

SE-Inception Module

  1. Scale

: 改变(文字、图片)的尺寸大小

🚩 在残差网络中的应用

应用于 残差网络 Residual network 当中,形成

  1. SE-ResNet module

残差网络结构框图(Residual Block)

SE-ResNet Module

论文中对 SE block 的应用用于实验对比:

SE-ResNet-50 网络的准确性优于 ResNet-50 和模型深化版的 ResNet101 网络 ;
对于224 × 224像素的输入图像,ResNet-50 需要164 ms,而 SE-ResNet-50 需要167 ms ;

🚀 SENet 复现

这里实现的是

  1. SE-ResNet

系列网络 :

  1. # Here is the code :import torch
  2. import torch.nn as nn
  3. import torch.nn.functional as F
  4. from torchinfo import summary
  5. classSE_Block(nn.Module):# Squeeze-and-Excitation blockdef__init__(self, in_planes):super(SE_Block, self).__init__()
  6. self.avgpool = nn.AdaptiveAvgPool2d((1,1))
  7. self.conv1 = nn.Conv2d(in_planes, in_planes //16, kernel_size=1)
  8. self.relu = nn.ReLU()
  9. self.conv2 = nn.Conv2d(in_planes //16, in_planes, kernel_size=1)
  10. self.sigmoid = nn.Sigmoid()defforward(self, x):
  11. x = self.avgpool(x)
  12. x = self.conv1(x)
  13. x = self.relu(x)
  14. x = self.conv2(x)
  15. out = self.sigmoid(x)return out
  16. classBasicBlock(nn.Module):# 左侧的 residual block 结构(18-layer34-layer
  17. expansion =1def__init__(self, in_planes, planes, stride=1):# 两层卷积 Conv2d + Shutcutssuper(BasicBlock, self).__init__()
  18. self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3,
  19. stride=stride, padding=1, bias=False)
  20. self.bn1 = nn.BatchNorm2d(planes)
  21. self.conv2 = nn.Conv2d(planes, planes, kernel_size=3,
  22. stride=1, padding=1, bias=False)
  23. self.bn2 = nn.BatchNorm2d(planes)
  24. self.SE = SE_Block(planes)# Squeeze-and-Excitation block
  25. self.shortcut = nn.Sequential()if stride !=1or in_planes != self.expansion*planes:# Shutcuts用于构建 Conv Block Identity Block
  26. self.shortcut = nn.Sequential(
  27. nn.Conv2d(in_planes, self.expansion*planes,
  28. kernel_size=1, stride=stride, bias=False),
  29. nn.BatchNorm2d(self.expansion*planes))defforward(self, x):
  30. out = F.relu(self.bn1(self.conv1(x)))
  31. out = self.bn2(self.conv2(out))
  32. SE_out = self.SE(out)
  33. out = out * SE_out
  34. out += self.shortcut(x)
  35. out = F.relu(out)return out
  36. classBottleneck(nn.Module):# 右侧的 residual block 结构(50-layer101-layer152-layer
  37. expansion =4def__init__(self, in_planes, planes, stride=1):# 三层卷积 Conv2d + Shutcutssuper(Bottleneck, self).__init__()
  38. self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
  39. self.bn1 = nn.BatchNorm2d(planes)
  40. self.conv2 = nn.Conv2d(planes, planes, kernel_size=3,
  41. stride=stride, padding=1, bias=False)
  42. self.bn2 = nn.BatchNorm2d(planes)
  43. self.conv3 = nn.Conv2d(planes, self.expansion*planes,
  44. kernel_size=1, bias=False)
  45. self.bn3 = nn.BatchNorm2d(self.expansion*planes)
  46. self.SE = SE_Block(self.expansion*planes)# Squeeze-and-Excitation block
  47. self.shortcut = nn.Sequential()if stride !=1or in_planes != self.expansion*planes:# Shutcuts用于构建 Conv Block Identity Block
  48. self.shortcut = nn.Sequential(
  49. nn.Conv2d(in_planes, self.expansion*planes,
  50. kernel_size=1, stride=stride, bias=False),
  51. nn.BatchNorm2d(self.expansion*planes))defforward(self, x):
  52. out = F.relu(self.bn1(self.conv1(x)))
  53. out = F.relu(self.bn2(self.conv2(out)))
  54. out = self.bn3(self.conv3(out))
  55. SE_out = self.SE(out)
  56. out = out * SE_out
  57. out += self.shortcut(x)
  58. out = F.relu(out)return out
  59. classSE_ResNet(nn.Module):def__init__(self, block, num_blocks, num_classes=1000):super(SE_ResNet, self).__init__()
  60. self.in_planes =64
  61. self.conv1 = nn.Conv2d(3,64, kernel_size=3,
  62. stride=1, padding=1, bias=False)# conv1
  63. self.bn1 = nn.BatchNorm2d(64)
  64. self.layer1 = self._make_layer(block,64, num_blocks[0], stride=1)# conv2_x
  65. self.layer2 = self._make_layer(block,128, num_blocks[1], stride=2)# conv3_x
  66. self.layer3 = self._make_layer(block,256, num_blocks[2], stride=2)# conv4_x
  67. self.layer4 = self._make_layer(block,512, num_blocks[3], stride=2)# conv5_x
  68. self.avgpool = nn.AdaptiveAvgPool2d((1,1))
  69. self.linear = nn.Linear(512* block.expansion, num_classes)def_make_layer(self, block, planes, num_blocks, stride):
  70. strides =[stride]+[1]*(num_blocks-1)
  71. layers =[]for stride in strides:
  72. layers.append(block(self.in_planes, planes, stride))
  73. self.in_planes = planes * block.expansion
  74. return nn.Sequential(*layers)defforward(self, x):
  75. x = F.relu(self.bn1(self.conv1(x)))
  76. x = self.layer1(x)
  77. x = self.layer2(x)
  78. x = self.layer3(x)
  79. x = self.layer4(x)
  80. x = self.avgpool(x)
  81. x = torch.flatten(x,1)
  82. out = self.linear(x)return out
  83. defSE_ResNet18():return SE_ResNet(BasicBlock,[2,2,2,2])defSE_ResNet34():return SE_ResNet(BasicBlock,[3,4,6,3])defSE_ResNet50():return SE_ResNet(Bottleneck,[3,4,6,3])defSE_ResNet101():return SE_ResNet(Bottleneck,[3,4,23,3])defSE_ResNet152():return SE_ResNet(Bottleneck,[3,8,36,3])deftest():
  84. net = SE_ResNet50()
  85. y = net(torch.randn(1,3,224,224))print(y.size())
  86. summary(net,(1,3,224,224))if __name__ =='__main__':
  87. test()

输出结果:

  1. torch.Size([1,1000])===============================================================================================
  2. Layer (type:depth-idx) Output Shape Param #===============================================================================================
  3. SE_ResNet ----
  4. ├─Conv2d:1-1[1,64,224,224]1,728
  5. ├─BatchNorm2d:1-2[1,64,224,224]128
  6. ├─Sequential:1-3[1,256,224,224]--
  7. └─Bottleneck:2-1[1,256,224,224]--
  8. └─Conv2d:3-1[1,64,224,224]4,096
  9. └─BatchNorm2d:3-2[1,64,224,224]128
  10. └─Conv2d:3-3[1,64,224,224]36,864
  11. └─BatchNorm2d:3-4[1,64,224,224]128
  12. └─Conv2d:3-5[1,256,224,224]16,384
  13. └─BatchNorm2d:3-6[1,256,224,224]512
  14. └─SE_Block:3-7[1,256,1,1]8,464
  15. └─Sequential:3-8[1,256,224,224]16,896
  16. └─Bottleneck:2-2[1,256,224,224]--
  17. └─Conv2d:3-9[1,64,224,224]16,384
  18. └─BatchNorm2d:3-10[1,64,224,224]128
  19. └─Conv2d:3-11[1,64,224,224]36,864
  20. └─BatchNorm2d:3-12[1,64,224,224]128
  21. └─Conv2d:3-13[1,256,224,224]16,384
  22. └─BatchNorm2d:3-14[1,256,224,224]512
  23. └─SE_Block:3-15[1,256,1,1]8,464
  24. └─Sequential:3-16[1,256,224,224]--
  25. └─Bottleneck:2-3[1,256,224,224]--
  26. └─Conv2d:3-17[1,64,224,224]16,384
  27. └─BatchNorm2d:3-18[1,64,224,224]128
  28. └─Conv2d:3-19[1,64,224,224]36,864
  29. └─BatchNorm2d:3-20[1,64,224,224]128
  30. └─Conv2d:3-21[1,256,224,224]16,384
  31. └─BatchNorm2d:3-22[1,256,224,224]512
  32. └─SE_Block:3-23[1,256,1,1]8,464
  33. └─Sequential:3-24[1,256,224,224]--
  34. ├─Sequential:1-4[1,512,112,112]--
  35. └─Bottleneck:2-4[1,512,112,112]--
  36. └─Conv2d:3-25[1,128,224,224]32,768
  37. └─BatchNorm2d:3-26[1,128,224,224]256
  38. └─Conv2d:3-27[1,128,112,112]147,456
  39. └─BatchNorm2d:3-28[1,128,112,112]256
  40. └─Conv2d:3-29[1,512,112,112]65,536
  41. └─BatchNorm2d:3-30[1,512,112,112]1,024
  42. └─SE_Block:3-31[1,512,1,1]33,312
  43. └─Sequential:3-32[1,512,112,112]132,096
  44. └─Bottleneck:2-5[1,512,112,112]--
  45. └─Conv2d:3-33[1,128,112,112]65,536
  46. └─BatchNorm2d:3-34[1,128,112,112]256
  47. └─Conv2d:3-35[1,128,112,112]147,456
  48. └─BatchNorm2d:3-36[1,128,112,112]256
  49. └─Conv2d:3-37[1,512,112,112]65,536
  50. └─BatchNorm2d:3-38[1,512,112,112]1,024
  51. └─SE_Block:3-39[1,512,1,1]33,312
  52. └─Sequential:3-40[1,512,112,112]--
  53. └─Bottleneck:2-6[1,512,112,112]--
  54. └─Conv2d:3-41[1,128,112,112]65,536
  55. └─BatchNorm2d:3-42[1,128,112,112]256
  56. └─Conv2d:3-43[1,128,112,112]147,456
  57. └─BatchNorm2d:3-44[1,128,112,112]256
  58. └─Conv2d:3-45[1,512,112,112]65,536
  59. └─BatchNorm2d:3-46[1,512,112,112]1,024
  60. └─SE_Block:3-47[1,512,1,1]33,312
  61. └─Sequential:3-48[1,512,112,112]--
  62. └─Bottleneck:2-7[1,512,112,112]--
  63. └─Conv2d:3-49[1,128,112,112]65,536
  64. └─BatchNorm2d:3-50[1,128,112,112]256
  65. └─Conv2d:3-51[1,128,112,112]147,456
  66. └─BatchNorm2d:3-52[1,128,112,112]256
  67. └─Conv2d:3-53[1,512,112,112]65,536
  68. └─BatchNorm2d:3-54[1,512,112,112]1,024
  69. └─SE_Block:3-55[1,512,1,1]33,312
  70. └─Sequential:3-56[1,512,112,112]--
  71. ├─Sequential:1-5[1,1024,56,56]--
  72. └─Bottleneck:2-8[1,1024,56,56]--
  73. └─Conv2d:3-57[1,256,112,112]131,072
  74. └─BatchNorm2d:3-58[1,256,112,112]512
  75. └─Conv2d:3-59[1,256,56,56]589,824
  76. └─BatchNorm2d:3-60[1,256,56,56]512
  77. └─Conv2d:3-61[1,1024,56,56]262,144
  78. └─BatchNorm2d:3-62[1,1024,56,56]2,048
  79. └─SE_Block:3-63[1,1024,1,1]132,160
  80. └─Sequential:3-64[1,1024,56,56]526,336
  81. └─Bottleneck:2-9[1,1024,56,56]--
  82. └─Conv2d:3-65[1,256,56,56]262,144
  83. └─BatchNorm2d:3-66[1,256,56,56]512
  84. └─Conv2d:3-67[1,256,56,56]589,824
  85. └─BatchNorm2d:3-68[1,256,56,56]512
  86. └─Conv2d:3-69[1,1024,56,56]262,144
  87. └─BatchNorm2d:3-70[1,1024,56,56]2,048
  88. └─SE_Block:3-71[1,1024,1,1]132,160
  89. └─Sequential:3-72[1,1024,56,56]--
  90. └─Bottleneck:2-10[1,1024,56,56]--
  91. └─Conv2d:3-73[1,256,56,56]262,144
  92. └─BatchNorm2d:3-74[1,256,56,56]512
  93. └─Conv2d:3-75[1,256,56,56]589,824
  94. └─BatchNorm2d:3-76[1,256,56,56]512
  95. └─Conv2d:3-77[1,1024,56,56]262,144
  96. └─BatchNorm2d:3-78[1,1024,56,56]2,048
  97. └─SE_Block:3-79[1,1024,1,1]132,160
  98. └─Sequential:3-80[1,1024,56,56]--
  99. └─Bottleneck:2-11[1,1024,56,56]--
  100. └─Conv2d:3-81[1,256,56,56]262,144
  101. └─BatchNorm2d:3-82[1,256,56,56]512
  102. └─Conv2d:3-83[1,256,56,56]589,824
  103. └─BatchNorm2d:3-84[1,256,56,56]512
  104. └─Conv2d:3-85[1,1024,56,56]262,144
  105. └─BatchNorm2d:3-86[1,1024,56,56]2,048
  106. └─SE_Block:3-87[1,1024,1,1]132,160
  107. └─Sequential:3-88[1,1024,56,56]--
  108. └─Bottleneck:2-12[1,1024,56,56]--
  109. └─Conv2d:3-89[1,256,56,56]262,144
  110. └─BatchNorm2d:3-90[1,256,56,56]512
  111. └─Conv2d:3-91[1,256,56,56]589,824
  112. └─BatchNorm2d:3-92[1,256,56,56]512
  113. └─Conv2d:3-93[1,1024,56,56]262,144
  114. └─BatchNorm2d:3-94[1,1024,56,56]2,048
  115. └─SE_Block:3-95[1,1024,1,1]132,160
  116. └─Sequential:3-96[1,1024,56,56]--
  117. └─Bottleneck:2-13[1,1024,56,56]--
  118. └─Conv2d:3-97[1,256,56,56]262,144
  119. └─BatchNorm2d:3-98[1,256,56,56]512
  120. └─Conv2d:3-99[1,256,56,56]589,824
  121. └─BatchNorm2d:3-100[1,256,56,56]512
  122. └─Conv2d:3-101[1,1024,56,56]262,144
  123. └─BatchNorm2d:3-102[1,1024,56,56]2,048
  124. └─SE_Block:3-103[1,1024,1,1]132,160
  125. └─Sequential:3-104[1,1024,56,56]--
  126. ├─Sequential:1-6[1,2048,28,28]--
  127. └─Bottleneck:2-14[1,2048,28,28]--
  128. └─Conv2d:3-105[1,512,56,56]524,288
  129. └─BatchNorm2d:3-106[1,512,56,56]1,024
  130. └─Conv2d:3-107[1,512,28,28]2,359,296
  131. └─BatchNorm2d:3-108[1,512,28,28]1,024
  132. └─Conv2d:3-109[1,2048,28,28]1,048,576
  133. └─BatchNorm2d:3-110[1,2048,28,28]4,096
  134. └─SE_Block:3-111[1,2048,1,1]526,464
  135. └─Sequential:3-112[1,2048,28,28]2,101,248
  136. └─Bottleneck:2-15[1,2048,28,28]--
  137. └─Conv2d:3-113[1,512,28,28]1,048,576
  138. └─BatchNorm2d:3-114[1,512,28,28]1,024
  139. └─Conv2d:3-115[1,512,28,28]2,359,296
  140. └─BatchNorm2d:3-116[1,512,28,28]1,024
  141. └─Conv2d:3-117[1,2048,28,28]1,048,576
  142. └─BatchNorm2d:3-118[1,2048,28,28]4,096
  143. └─SE_Block:3-119[1,2048,1,1]526,464
  144. └─Sequential:3-120[1,2048,28,28]--
  145. └─Bottleneck:2-16[1,2048,28,28]--
  146. └─Conv2d:3-121[1,512,28,28]1,048,576
  147. └─BatchNorm2d:3-122[1,512,28,28]1,024
  148. └─Conv2d:3-123[1,512,28,28]2,359,296
  149. └─BatchNorm2d:3-124[1,512,28,28]1,024
  150. └─Conv2d:3-125[1,2048,28,28]1,048,576
  151. └─BatchNorm2d:3-126[1,2048,28,28]4,096
  152. └─SE_Block:3-127[1,2048,1,1]526,464
  153. └─Sequential:3-128[1,2048,28,28]--
  154. ├─AdaptiveAvgPool2d:1-7[1,2048,1,1]--
  155. ├─Linear:1-8[1,1000]2,049,000===============================================================================================
  156. Total params:28,080,344
  157. Trainable params:28,080,344
  158. Non-trainable params:0
  159. Total mult-adds (G):63.60===============================================================================================
  160. Input size (MB):0.60
  161. Forward/backward pass size (MB):2691.18
  162. Params size (MB):112.32
  163. Estimated Total Size (MB):2804.10===============================================================================================

本文转载自: https://blog.csdn.net/weixin_45084253/article/details/124234120
版权归原作者 Horizon Max 所有, 如有侵权,请联系我们删除。

“[ 注意力机制 ] 经典网络模型1——SENet 详解与复现”的评论:

还没有评论