2.3 实现属于我们自己的向量
Vector.py
- class Vector:
- def init(self, lst):
self._values = lst
- #return len
- def len(self):
- return len(self._values)
- #return index th item
- def getitem(self, index):
- return self._values[index]
- #direct use call this method
- def repr(self):
- return "Vector({})".format(self._values)
- #print call this method
- def str(self):
- return "({})".format(", ".join(str(e) for e in self._values))
main_vector.py
- import sys
- import numpy
- import scipy
- from playLA.Vector import Vector
- if name == "main":
vec = Vector([ 5, 2])
print(vec)
print(len(vec))
print( "vec[0] = {}, vec[1] = {}".format(vec[0], vec[1]))
2.5 实现向量的基本运算
Vector.py
- class Vector:
- def init(self, lst):
self._values = lst
- #return len
- def len(self):
- return len(self._values)
- #return index th item
- def getitem(self, index):
- return self._values[index]
- #direct use call this method
- def repr(self):
- return "Vector({})".format(self._values)
- #print call this method
- def str(self):
- return "({})".format(", ".join(str(e) for e in self._values))
- #vector add method
- def add(self, another):
- assert len(self) == len(another),"lenth not same"
return Vector([a + b for a, b in zip(self._values, another._values)])
- return Vector([a + b for a, b in zip(self, another)])
- #迭代器 设计_values其实是私有成员变量,不想别人访问,所以使用迭代器
- #单双下划线开头体现在继承上,如果类内内部使用的变量使用单下划线
- def iter(self):
- return self._values.iter()
- #sub
- def sub(self, another):
return Vector([a + b for a, b in zip(self._values, another._values)])
- return Vector([a - b for a, b in zip(self, another)])
- #self * k
- def mul(self, k):
- return Vector([k * e for e in self])
k * self
- def rmul(self, k):
- return Vector([k * e for e in self])
- #取正
- def pos(self):
- return 1 * self
- #取反
- def neg(self):
- return -1 * self
main_vector.py
- import sys
- import numpy
- import scipy
- from playLA.Vector import Vector
- if name == "main":
vec = Vector([ 5, 2])
print(vec)
print(len(vec))
print( "vec[0] = {}, vec[1] = {}".format(vec[0], vec[1]))
vec2 = Vector([ 3, 1])
print( "{} + {} = {}".format(vec, vec2, vec + vec2))
print( "{} - {} = {}".format(vec, vec2, vec - vec2))
print( "{} * {} = {}".format(vec, 3, vec * 3))
print( "{} * {} = {}".format(3, vec, vec * 3))
print( "-{} = {}".format(vec, -vec))
print( "+{} = {}".format(vec, +vec))
2.8 实现0向量
Vector.py
- @classmethod
- def zero(cls, dim):
- return cls([0] * dim)
main_vector.py
zero2 = Vector.zero( 2)
print(zero2)
print( "{} + {} = {}".format(vec, zero2, vec + zero2))
3.2实现向量规范
Vector.py
self / k
- def truediv(self, k):
- return Vector((1 / k) * self)
- #模
- def norm(self):
- return math.sqrt(sum(e**2 for e in self))
- #归一化
- def normalize(self):
- if self.norm() < EPSILON:
- raise ZeroDivisionError("Normalize error! norm is zero.")
- return Vector(self._values)/self.norm()
main_vector.py
print( "normalize vec is ({})".format(vec.normalize()))
print(vec.normalize().norm())
- try :
zero2.normalize()
- except ZeroDivisionError:
print( "cant normalize zero vector {}".format(zero2))
3.3 向量的点乘
3.5实现向量的点乘操作
Vector.py
- def dot(self, another):
- assert len(self) == len(another), "Error in dot product. Length of vectors must be same."
- return sum(a * b for a, b in zip(self, another))
main_vector.py
print(vec.dot(vec2))
3.6向量点乘的应用
3.7numpy中向量的基本使用
main_numpy_vector.py
- import numpy as np
- if name == "main":
print(np.__version__)
lst = [ 1, 2, 3]
lst[ 0] = "LA"
print(lst)
- #numpy中只能存储一种数据
vec = np.array([ 1, 2, 3])
print(vec)
vec[0] = "LA"
vec[0] = 666
print(vec)
print(np.zeros( 5))
print(np.ones( 5))
print(np.full( 5, 666))
print(vec)
print( "size = ", vec.size)
print( "size = ", len(vec))
print(vec[ 0])
print(vec[ -1])
print(vec[ 0:2])
print(type(vec[ 0:2]))
- #点乘
vec2 = np.array([ 4, 5, 6])
print( "{} + {} = {}".format(vec, vec2, vec + vec2))
print( "{} - {} = {}".format(vec, vec2, vec - vec2))
print( "{} * {} = {}".format(2, vec, 2 * vec))
print( "{} * {} = {}".format(vec, 2, vec * 2))
print( "{} * {} = {}".format(vec, vec2, vec * vec2))
print( "{}.dot({})= {}".format(vec, vec2, vec.dot(vec2)))
- #求模
print(np.linalg.norm(vec))
print(vec/ np.linalg.norm(vec))
print(np.linalg.norm(vec/ np.linalg.norm(vec)))
- #为什么输出nan
zero3 = np.zeros( 3)
print(zero3 /np.linalg.norm(zero3))
4矩阵
4.2实现矩阵
Matrix.py
- from .Vector import Vector
- class Matrix:
- #list2d二维数组
- def init(self, list2d):
self._values = [row[:] for row in list2d]
- def repr(self):
- return "Matrix({})".format(self._values)
__str__ = __repr__
- def shape(self):
- return len(self._values),len(self._values[0])
- def row_num(self):
- return self.shape()[0]
- def col_num(self):
- return self.shape()[1]
- def size(self):
r, c = self.shape()
- return r * c
__len__ = row_num
- def getitem(self, pos):
r, c =pos
- return self._values[r][c]
- #第index个行向量
- def row_vector(self, index):
- return Vector(self._values[index])
- def col_vector(self, index):
- return Vector([row[index] for row in self._values])
main_matrix.py
- from playLA.Matrix import Matrix
- if name == "main":
matrix = Matrix([[ 1, 2],[3, 4]])
print(matrix)
print( "matrix.shape = {}".format(matrix.shape()))
print( "matrix.size = {}".format(matrix.size()))
print( "matrix.len = {}".format(len(matrix)))
print( "matrix[0][0]= {}".format(matrix[0, 0]))
print( "{}".format(matrix.row_vector(0)))
print( "{}".format(matrix.col_vector(0)))
4.4 实现矩阵的基本计算
Matrix.py
- def add(self, another):
- assert self.shape() == another.shape(),"ERROR in shape"
- return Matrix([[a + b for a, b in zip(self.row_vector(i), another.row_vector(i))]for i in range(self.row_num())])
- def sub(self, another):
- assert self.shape() == another.shape(),"ERROR in shape"
- return Matrix([[a - b for a, b in zip(self.row_vector(i), another.row_vector(i))]for i in range(self.row_num())])
- def mul(self, k):
- return Matrix([[e*k for e in self.row_vector(i)] for i in range(self.row_num())])
- def rmul(self, k):
- return self * k
- #数量除法
- def truediv(self, k):
- return (1/k) * self
- def pos(self):
- return 1 * self
- def neg(self):
- return -1 * self
- @classmethod
- def zero(cls, r, c):
- return cls([[0]*c for _ in range(r)])
main_matrix.py
matrix2 = Matrix([[ 5, 6], [7, 8]])
print( "add: {}".format(matrix + matrix2))
print( "sub: {}".format(matrix - matrix2))
print( "mul: {}".format(matrix * 2))
print( "rmul: {}".format(2 * matrix))
print( "zero_2_3:{}".format(Matrix.zero(2, 3)))
4.8实现矩阵乘法
Matrix.py
main_matrix.py
Matrix.py
- def dot(self, another):
- if isinstance(another, Vector):
- assert self.col_num() == len(another), "error in shape"
- return Vector([self.row_vector(i).dot(another) for i in range(self.row_num())])
- if isinstance(another, Matrix):
- assert self.col_num() == another.row_num(),"error in shape"
- return Matrix([self.row_vector(i).dot(another.col_vector(j)) for j in range(another.col_num())] for i in range(self.row_num()))
main_matrix.py
T = Matrix([[ 1.5, 0], [0, 2]])
p = Vector([ 5, 3])
print( "T.dot(p)= {}".format(T.dot(p)))
P = Matrix([[ 0, 4, 5], [0, 0, 3]])
print( "T.dot(P)={}".format(T.dot(P)))
4.11 实现矩阵转置和Numpy中的矩阵
main_numpy_matrix.py
- import numpy as np
- if name == "main":
- #创建矩阵
A = np.array([[ 1, 2], [3, 4]])
print(A)
- #矩阵属性
print(A.shape)
print(A.T)
- #获取矩阵元素
print(A[ 1, 1])
print(A[ 0])
print(A[:, 0])
print(A[ 1, :])
- #矩阵的基本运算
B = np.array([[ 5, 6], [7, 8]])
print(A + B)
print(A - B)
print( 10 * A)
print(A * 10)
print(A * B)
print(A.dot(B))
5 矩阵进阶
5.3 矩阵变换
main_matrix_transformation.py
- import math
- import matplotlib.pyplot as plt
- from playLA.Matrix import Matrix
- from playLA.Vector import Vector
- if name == "main":
points = [[ 0, 0], [0, 5], [3, 5], [3, 4], [1, 4],
[ 1, 3], [2, 3], [2, 2], [1, 2], [1, 0]]
x = [point[ 0] for point in points]
y = [point[ 1] for point in points]
plt.figure(figsize=( 5, 5))
plt.xlim( -10, 10)
plt.ylim( -10, 10)
plt.plot(x, y)
plt.show()
P = Matrix(points)
T = Matrix([[2, 0], [0, 1.5]])#x扩大2倍,y扩大1.5倍
T = Matrix([[1, 0], [0, -1]])#关于X轴对称
T = Matrix([[-1, 0], [0, 1]])#关于X轴对称
T = Matrix([[-1, 0], [0, -1]])#关于原点对称
T = Matrix([[1, 0.5], [0, 1]])
T = Matrix([[1, 0], [0.5, 1]])
theta = math.pi / 3
- #旋转theta角度
T = Matrix([[math.cos(theta), math.sin(theta)], [-math.sin(theta), math.cos(theta)]])
P2 = T.dot(P.T())
plt.plot([P2.col_vector(i)[ 0] for i in range(P2.col_num())],[P2.col_vector(i)[1] for i in range(P2.col_num())])
plt.show()
5.6实现单位矩阵和numpy中的逆矩阵
Matrix.py
- #单位矩阵
- @classmethod
- def identity(cls, n):
m = [[ 0]*n for _ in range(n)]
- for i in range(n):
m[i][i] = 1
- return cls(m)
main_matrix.py
I = Matrix.identity( 2)
print(I)
print( "A.dot(I) = {}".format(matrix.dot(I)))
print( "I.dot(A) = {}".format(I.dot(matrix)))
main_numpy_matrix.py
- #numpy中的逆矩阵
invA = np.linalg.inv(A)
print(invA)
print(A.dot(invA))
print(invA.dot(A))
C = np.array([[ 1,2]])
print(np.linalg.inv(C))
5.8用矩阵表示空间
x轴就是(0,1)y轴就是(-1,0)
6 线性系统
6.4实现高斯-约旦消元法
https://blog.csdn.net/weixin_40709094/article/details/105602775
版权归原作者 小石小石摩西摩西 所有, 如有侵权,请联系我们删除。