0


基于OpenCV构建停车场车位识别项目

OpenCV是一个基于(开源)发行的跨平台计算机视觉库,能实现图像处理和计算机视觉方面的很多通用算法。车位识别的图像处理过程如图所示。

在python中设置完所有内容后, 最重要的依赖关系将是OpenCV库。通过pip将其添加到虚拟环境中,可以运行

pip install opencv-python


要检查所有设置是否正确,我们可以使用以下

cv2.__version__

命令打印环境中可用的当前OpenCV版本。


首先处理旋转矩形

从图中可以看到,由于视频拍摄角度的问题,车位不是横平竖直的,并且车位在屏幕上的大小和角度也是不相同的。需要用到旋转矩形的操作,并调整单个矩形框使其能够用于所有车位。

假设对图片上任意点(

    x
   
   
    ,
   
   
    y
   
  
  
   x,y
  
 
x,y),绕一个坐标点(

 
  
   
    
     r
    
    
     
      x
     
     
      0
     
    
   
   
    ,
   
   
    
     r
    
    
     
      y
     
     
      0
     
    
   
  
  
   r_{x0},r_{y0}
  
 
rx0​,ry0​)顺时针旋转a角度后的新的坐标设为

 
  
   
    (
   
   
    
     x
    
    
     0
    
   
   
    ,
   
   
    
     y
    
    
     0
    
   
   
    )
   
  
  
   (x_0, y_0)
  
 
(x0​,y0​),则有公式:

 
  
   
    
     
      x
     
     
      0
     
    
    
     =
    
    
     (
    
    
     x
    
    
     −
    
    
     
      r
     
     
      
       x
      
      
       0
      
     
    
    
     )
    
    
     c
    
    
     o
    
    
     s
    
    
     a
    
    
     −
    
    
     (
    
    
     y
    
    
     −
    
    
     
      r
     
     
      
       y
      
      
       0
      
     
    
    
     )
    
    
     s
    
    
     i
    
    
     n
    
    
     a
    
    
     +
    
    
     
      r
     
     
      
       x
      
      
       0
      
     
    
   
   
     x_0=(x-r_{x_0})cosa-(y-r_{y_0})sina+r_{x_0} 
   
  
 x0​=(x−rx0​​)cosa−(y−ry0​​)sina+rx0​​

 
  
   
    
     
      y
     
     
      0
     
    
    
     =
    
    
     (
    
    
     x
    
    
     −
    
    
     
      r
     
     
      
       x
      
      
       0
      
     
    
    
     )
    
    
     s
    
    
     i
    
    
     n
    
    
     a
    
    
     +
    
    
     (
    
    
     y
    
    
     −
    
    
     
      r
     
     
      
       y
      
      
       0
      
     
    
    
     )
    
    
     c
    
    
     o
    
    
     s
    
    
     a
    
    
     +
    
    
     
      r
     
     
      
       y
      
      
       0
      
     
    
    
     ,
    
   
   
     y_0=(x-r_{x_0})sina+(y-r_{y_0})cosa+r_{y_0}, 
   
  
 y0​=(x−rx0​​)sina+(y−ry0​​)cosa+ry0​​,

根据此公式,创建函数完成矩阵旋转操作。

下面是实现的代码:

# 矩形框顺时针旋转
import cv2
import math

# 传入旋转的参考点坐标,矩形框左上角坐标(x,y),框的宽w和高h,旋转角度a
def angleRota(center_x, center_y, x, y, w, h, a):
    # 角度转弧度
    a = (math.pi / 180) * a
    # 旋转前左上角坐标
    x1, y1 = x, y
    # 右上角坐标
    x2, y2 = x + w, y
    # 右下角坐标
    x3, y3 = x + w, y + h
    # 左下角坐标
    x4, y4 = x, y + h

    # 旋转后的左上角坐标,像素坐标是整数
    px1 = int((x1 - center_x) * math.cos(a) - (y1 - center_y) * math.sin(a) + center_x)
    py1 = int((x1 - center_x) * math.sin(a) + (y1 - center_y) * math.cos(a) + center_y)
    # 右上角坐标
    px2 = int((x2 - center_x) * math.cos(a) - (y2 - center_y) * math.sin(a) + center_x)
    py2 = int((x2 - center_x) * math.sin(a) + (y2 - center_y) * math.cos(a) + center_y)
    # 右下角坐标
    px3 = int((x3 - center_x) * math.cos(a) - (y3 - center_y) * math.sin(a) + center_x)
    py3 = int((x3 - center_x) * math.sin(a) + (y3 - center_y) * math.cos(a) + center_y)
    # 左下角坐标
    px4 = int((x4 - center_x) * math.cos(a) - (y4 - center_y) * math.sin(a) + center_x)
    py4 = int((x4 - center_x) * math.sin(a) + (y4 - center_y) * math.cos(a) + center_y)

    # 保存每一个角的坐标
    pt1 = (px1, py1)
    pt2 = (px2, py2)
    pt3 = (px3, py3)
    pt4 = (px4, py4)

    # 存储每个角的坐标
    angle = [pt1, pt2, pt3, pt4]

    # 返回调整后的坐标
    return angle

# 绘制旋转后的矩形框
def drawLine(img, angle, color, thickness):
    # 分别绘制四条边
    cv2.line(img, angle[0], angle[1], color, thickness)
    cv2.line(img, angle[1], angle[2], color, thickness)
    cv2.line(img, angle[2], angle[3], color, thickness)
    cv2.line(img, angle[3], angle[0], color, thickness)

    # 返回绘制好旋转矩形的图像
    return img

# 矩形旋转
def recRota(img, center_x, center_y, x1, y1, w, h, rota, draw=True):
    '''
    img: 原图像
    (center_X, center_y): 旋转参考点的坐标
    (x1, y1): 矩形框左上角坐标
    w: 矩形框的宽
    h: 矩形框的高
    rota: 顺时针的旋转角度,如:30°
    '''

    color = (255, 255, 0)  # 绘制停车线的线条颜色
    thickness = 2  # 停车线线条宽度

    # (1)计算旋转一定角度后的四个角的坐标
    angle = angleRota(x1, y1, x1, y1, w, h, rota)

    # (2)绘制旋转后的矩形
    if draw == True:
        img = drawLine(img, angle, color, thickness)

        # 返回绘制后的图像,以及矩形框的四个角的坐标
        return img, angle

    else:
        return angle

处理单帧图像,划分车位

绘制后的单帧图像如图所示

import cv2

video = cv2.VideoCapture('./input.mp4')

ret, cap = video.read()

cv2.imwrite('./first.jpg', cap)

处理视频,分割出所有车位

在对单帧图像处理时,已将所有车位分割出来,并记录下左上角坐标。由于每个车位框是倾斜的,如果要分割出每个车位,必须使用切片方法,但切片出来的图像是横平竖直的。因此针对每一个车位框,都以该框的左上角为旋转参考,旋转整张帧图像,将车位框摆正之后再进行切片。

下面是实现的代码:

# w, h = 90, 160  # 矩形框的宽和高
    # w, h = 70, 130
    w, h = 90, 160
    # 遍历所有的矩形框坐标
    for pos in posList:
        # 得到旋转后的矩形的四个角坐标,传入原图,旋转参考点坐标,矩形框左上角坐标,框的宽w和高h,逆时针转4°
        angle = recRota(imgDilate, pos[0], pos[1], pos[0], pos[1], w, h, -5, draw=False)  # 裁剪的车位不绘制车位图

        # (5)裁剪所有的车位框,由于我们的矩形是倾斜的,先要把矩形转正之后再裁剪
        # 变换矩阵,以每个矩形框的左上坐标为参考点,顺时针寻转4°,旋转后的图像大小不变
        rota_params = cv2.getRotationMatrix2D(angle[0], angle=-4, scale=1)

        # 旋转整张帧图片,输入img图像,变换矩阵,指定输出图像大小
        rota_img = cv2.warpAffine(imgDilate, rota_params, (img_w, img_h))

        # 裁剪摆正了的矩形框,先指定高h,再指定宽w
        imgCrop = rota_img[pos[1]:pos[1] + h, pos[0]:pos[0] + w]

        # 显示裁剪出的图像
        cv2.imshow('imgCrop', imgCrop)

处理像素点

处理像素点是车位识别的难点,对于采集到的24位真彩色位图图像文件所需存储量大,图像需要占用大量系统资源,不利于图像的快速处理。

灰度图只包含亮度信息,不含彩色信息,有利于图像的处理,故在对图像进行处理前应先将其转化为灰度图。

由于在拍摄过程中,受各种主客观因素的影响,我们获得的车辆图像和实际的需要存在某种程度的差异,如果差异过大,会造成图像分割和识别的困难,严重时甚至会使分割和识别根本无法进行。为此,本文采取一些图像增强方法来综合处理。

(1)二值化方法
图像的二值化是最简单的图像处理技术,一般都跟具体算法联系,本技术中对滤波后的灰度图转换为二值图,采用自适应阈值方法。

(2)中值滤波

中值滤波是一种局部平均平滑技术,在一定条件下,中值滤波可以克服线性滤波器所带来的图像细节模糊,而且对滤除脉冲干扰及颗粒噪声最为有效。

(3)膨胀

膨胀操作就是将图像(或图像的一部分区域,称之为A)与核(称之为B)进行卷积。核可以是任何形状和大小,它拥有一个单独定义出来的参考点,我们称其为锚点。

代码实现如下:

while True:

    # 记录有几个空车位
    spacePark = 0

    # 返回图像是否读取成功,以及读取的帧图像img
    success, img = cap.read()
    if img is None:
                break
    # 为了使裁剪后的单个车位里面没有绘制的边框,需要在画车位框之前,把原图像复制一份
    imgCopy = img.copy()

    # 获得整每帧图片的宽和高
    img_w, img_h = img.shape[:2]  # shape是(w,h,c)

    # ==1== 转换灰度图,通过形态学处理来检测车位内有没有车
    imgGray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

    # ==2== 高斯滤波,卷积核3*3,沿x和y方向的卷积核的标准差为1
    imgGray = cv2.GaussianBlur(imgGray, (3, 3), 1)

    # ==3== 二值图,自适应阈值方法
    imgThresh = cv2.adaptiveThreshold(imgGray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
                                      cv2.THRESH_BINARY_INV, 101, 20)

    # ==4== 删除零散的白点,
    # 如果车位上有车,那么车位上的像素数量(白点)很多,如果没有车,车位框内基本没什么白点
    imgMedian = cv2.medianBlur(imgThresh, 5)

    # ==5== 扩张白色部分,膨胀
    kernel = np.ones((3, 3), np.uint8)  # 设置卷积核
    imgDilate = cv2.dilate(imgMedian, kernel, iterations=1)  # 迭代次数为1

    # 由于这个视频比较短,就循环播放这个视频
    if cap.get(cv2.CAP_PROP_POS_FRAMES) == cap.get(cv2.CAP_PROP_FRAME_COUNT):
        # 如果当前帧==总帧数,那就重置当前帧为0
        cap.set(cv2.CAP_PROP_POS_FRAMES, 0)

三种方法处理后的图像分别如图所示。

车位检测

我们的检测思路是:通过计算每个车位框内的像素个数来判断该车位内是否有车。经过上述处理后,我们计算每个分割出来的车位框中的白点个数,返回灰度值不为0的像素数量。经过分析,如果白点数量大于1800,那么就表明车位上有车。

代码实现如下:

        count = cv2.countNonZero(imgCrop)

        # 将计数显示在矩形框上
        cv2.putText(imgCopy, str(count), (pos[0] + 5, pos[1] + 20), cv2.FONT_HERSHEY_COMPLEX, 0.8, (0, 255, 255), 2)

        # (7)确定车位上是否有车
        if count < 3000:  # 像素数量小于3000辆就是没有车
            color = (0, 255, 0)  # 没有车的话车位线就是绿色
            spacePark += 1  # 每检测到一个空车位,数量就加一
        else:
            color = (0, 0, 255)  # 有车时车位线就是红色

最后我们的检测结果如图所示。

现在,我们就构建好了一个停车场车位识别的系统!


本文转载自: https://blog.csdn.net/AI_ayuan/article/details/129321971
版权归原作者 AI阿远学长 所有, 如有侵权,请联系我们删除。

“基于OpenCV构建停车场车位识别项目”的评论:

还没有评论