1.背景
1)目前自动化测试用例维护成本极高且维护人员缺乏维护“兴趣”;
2)现有自动化数据生成方案,数据质量和量级难以均衡保障;
3)公司内部测试提效平台繁多,缺乏核心部件测试数据,没有测试数据就无法很好的接入使用各类提效平台。
2.名词解释
例子:根据天气情况预测是否可以打球
数据集:机器学习使用的数据集合被称为“数据集”
样本:数据集中的每一个数据
特征:像气象信息中的天气、温度、湿度这些数据
标签:“是否可以打球”就是机器学习根据当天数据做的一个概括性结论
模型:获得基于天气特征来判断是否适合打球的“理论依据”
学习/训练:从数据集中“学得”模型的过程
版权归原作者 旦莫 所有, 如有侵权,请联系我们删除。