在日常工作中,我们可能会从多个数据集中获取数据,并且希望合并两个或多个不同的数据集。这时就可以使用Pandas包中的Merge函数。在本文中,我们将介绍用于合并数据的三个函数
merge
、
merge_ordered
、
merge_asof
merge
merge函数是Pandas中执行基本数据集合并的首选函数。函数将根据给定的数据集索引或列组合两个数据集。
我们使用下面试示例:
import pandas as pd
customer = pd.DataFrame({'cust_id': [1,2,3,4,5],
'cust_name': ['Maria', 'Fran', 'Dominique', 'Elsa', 'Charles'],
'country': ['German', 'Spain', 'Japan', 'Poland', 'Argentina']})
order = pd.DataFrame({'order_id': [200, 201,202,203,204],
'cust_id':[1,3,3,4,2],
'order_date': ['2014-07-05', '2014-07-06', '2014-07-07', '2014-07-07', '2014-07-08'],
'order_value': [10.1, 20.5, 18.7, 19.1, 13.5]})
我们尝试模拟两个不同的数据集:客户和订单数据,其中cust_id列同时存在于两个DataFrame中。
pd.merge(customer, order)
默认情况下,merge函数是这样工作的:
将按列合并,并尝试从两个数据集中找到公共列,使用来自两个DataFrame(内连接)的列值之间的交集。
列和索引合并
在上面合并的数据集中,merge函数在cust_id列上连接两个数据集,因为它是唯一的公共列。我们也可以指定要在两个数据集上连接的列名。
如果两个列的名称都存在于两个DataFrame中,则可以使用参数on。
pd.merge(customer, order, on = 'cust_id')
结果与前面的示例类似,因为cust_id是唯一的公共列。但是如果两个DataFrame都包含两个或多个具有相同名称的列,则这个参数就很重要。
我们来创建一个包含两个相似列的数据。
customer = pd.DataFrame({'cust_id': [1,2,3,4,5],
'cust_name': ['Maria', 'Fran', 'Dominique', 'Elsa', 'Charles'],
'country': ['German', 'Spain', 'Japan', 'Poland', 'Argentina']})
order = pd.DataFrame({'order_id': [200, 201,202,203,204],
'cust_id':[1,3,3,4,2],
'order_date': ['2014-07-05', '2014-07-06', '2014-07-07', '2014-07-07', '2014-07-08'],
'order_value': [10.1, 20.5, 18.7, 19.1, 13.5],
'country' : ['German', 'Indonesia', 'Armenia', 'Singapore', 'Japan']
})
数据集现在包含两个名称相似的列:cust_id和country。让我们看看如果使用默认方法合并两个DataFrame会发生什么。
pd.merge(customer, order)
只剩下一行了,这是因为merge函数将使用与键名相同的所有列来合并两个数据集。所以现在是通过cust_id和country中找到的相同值来实现合并的。
还有一个问题,我们指定一个列后,其他的重复列(这里是country),现在存在country_x和country_y列。这两列是来自各自数据集的国家列。country_x来自Customer数据集,country_y来自Order数据集。
为了帮助区分合并过程中相同列名的结果,我们可以将一个元组对象传递给suffix参数。
pd.merge(customer, order, on ='cust_id', suffixes = ('_customer', '_order'))
使用suffix参数,可以让我们避免混淆,或者在合并前我们直接将列改名
customer = customer.rename(columns = {'country':'customer_country'})
order = order.rename(columns = {'country':'delivery_country'})
这样就不会造成混淆了。
然是如果我们要合并的列名在两个数据集不同时,on参数就没有效果了,这时就需要使用left_on和right_on参数,我们这里以刚刚改名的country列为例:
pd.merge(customer, order,
left_on = 'customer_country', right_on = 'delivery_country',
suffixes = ('_customer', '_order'))
在上面的代码中,我们将左侧数据集(Customer)上想要合并的列传递给left_on参数,将右侧数据集(Order)的列名传递给right_on参数。
left_on和right_on参数是串联工作的,因此我们不能在left_on参数中传递列名,而将right_on参数保留为空。
我们也可以使用left_index和right_index来替换left_on和right_on参数。right_index和left_index参数控制merge函数,以根据索引而不是列连接数据集。
pd.merge(customer, order, left_index = True, right_on = 'cust_id',
suffixes = ('_customer', '_order'))
在上面的代码将True值传递给left_index参数,表示希望使用左侧数据集上的索引作为连接键。合并过程类似于下图。
当我们按索引和列合并时,DataFrame结果将由于合并(匹配的索引)会增加一个额外的列。
合并类型介绍
默认情况下,当我们合并数据集时,merge函数将执行Inner Join。在Inner Join中,根据键之间的交集选择行。匹配在两个键列或索引中找到的相同值。
下图显示了Inner Join图,其中只选择了Customer和Order数据集上的列和/或索引之间匹配的值。
pd.merge(customer, order, left_on = 'customer_country',
right_on = 'delivery_country', suffixes = ('_customer', '_order'),
how = 'inner')
我们也可以使用左连接和右连接来保留想要的DataFrame。
pd.merge(customer, order, left_on = 'customer_country',
right_on = 'delivery_country', suffixes = ('_customer', '_order'),
how = 'left', indicator = True)
上面的代码,所有与订单数据值不匹配的客户数据值都用NaN值填充。
indicator=True参数,将创建_merge列。在上面的结果中,可以看到两个值都表明该行来自DataFrame和left_only的交集,其中该行来自第一个DataFrame(左侧)。
如果要执行右连接,可以使用以下代码。
pd.merge(customer, order, left_on = 'customer_country',
right_on = 'delivery_country', suffixes = ('_customer', '_order'),
how = 'right', indicator = True)
还可以在合并过程中使用外连接来保留两个DataFrame。我们可以把外连接看作是同时进行的左连接和右连接。
最后就是交叉连接,将合并两个DataFrame之间的每个数据行。
让我们用下面的代码尝试交叉连接。
pd.merge(customer, order, how = 'cross', suffixes = ('_customer', '_order'))
DataFrame将Customer数据中的每一行都与Order数据结合起来。
merge_ordered
在 Pandas 中,
merge_ordered
是一种用于合并有序数据的函数。它类似于
merge
函数,但适用于处理时间序列数据或其他有序数据。
merge_ordered
在合并时会保留原始数据的顺序,并且支持对缺失值进行处理。
pd.merge_ordered(customer, order)
默认情况下,merge_ordered将执行Outer Join并根据连接键对数据进行排序。我们也可以像更改合并类型一样调整how参数。
merge_ordered是为有序数据(如时间序列)开发的。所以我们创建另一个名为Delivery的数据集来模拟时间序列数据合并。
order = pd.DataFrame({'order_id': [200, 201,202,203,204],
'cust_id':[1,3,3,4,2],
'order_date': ['2014-07-05', '2014-07-06', '2014-07-07', '2014-07-07', '2014-07-08'],
'order_value': [10.1, 20.5, 18.7, 19.1, 13.5],
'delivery_country' : ['German', 'Indonesia', 'Armenia', 'Singapore', 'Japan']
})
delivery = pd.DataFrame({'delivery_date': ['2014-07-06', '2014-07-08', '2014-07-09', '2014-07-10'],
'product': ['Apple', 'Apple', 'Orange', 'Orange']})
让我们假设delivery_date是投递时间,它包含与Order数据集中的order_date一起使用。另外就是我们还需要将日期列转换为datetime对象。
order['order_date'] = pd.to_datetime(order['order_date'])
delivery['delivery_date'] = pd.to_datetime(delivery['delivery_date'])
让我们尝试按日期列合并两个数据集。
pd.merge_ordered(order, delivery,
left_on = 'order_date', right_on = 'delivery_date')
合并的DataFrame是按连接键排序的Order和Delivery数据集的Outer Join结果。
由于是外连接,一些数据点是空的。对于merge_ordered,有一个选项可以通过使用fill_method参数来填充缺失的值。
pd.merge_ordered(order, delivery, left_on = 'order_date',
right_on = 'delivery_date', fill_method = 'ffill' )
在上面的DataFrame中执行前向填充方法来计算缺失的值。
最后merge_ordered函数还可以基于数据集列执行DataFrame分组,并将它们一块一块地合并到另一个数据集。
pd.merge_ordered(order, delivery, left_on = 'order_date',
right_on = 'delivery_date', right_by = 'product')
在上面的代码中将product列传递给right_by参数,这样product列中的每个值都映射到每个可用行,并且用于对数据进行分组的同一DataFrame中不存在的数据用NaN填充。
为了进一步理解,我们在合并之前添加日期来对数据进行分组。
pd.merge_ordered(order, delivery, left_on = 'order_date',
right_on = 'delivery_date', right_by = ['delivery_date','product'])
在上面的合并过程中,我们最终得到了4个不同的组:
['2014–07–06', 'Apple'],
['2014–07–08', 'Apple'],
['2014–07–09', 'Orange'],
['2014–07–10', 'Orange']
该组基于所使用列中的现有行,因此它不是所有惟一值的组合。例如,没有[' 2014-07-09 ','Apple']组,因为此数据不存在。
在上面的DataFrame中可以看到Order数据集中的每一行都映射到Delivery数据集中的组。
merge_asof
merge_asof
是一种用于按照最近的关键列值合并两个数据集的函数。这个函数用于处理时间序列数据或其他有序数据,并且可以根据指定的列或索引按照最接近的值进行合并。
order = pd.DataFrame({'order_id': [199, 200, 201,202,203,204],
'cust_id':[1,1,3,3,4,2],
'order_date': ['2014-07-01', '2014-07-05', '2014-07-06', '2014-07-07', '2014-07-07', '2014-07-08'],
'order_value': [11, 10.1, 20.5, 18.7, 19.1, 13.5],
'delivery_country' : ['Poland', 'German', 'Indonesia', 'Armenia', 'Singapore', 'Japan']
})
delivery = pd.DataFrame({'delivery_date': ['2014-07-06', '2014-07-08', '2014-07-09', '2014-07-10'],
'product': ['Apple', 'Apple', 'Orange', 'Orange']})
使用merge_asof函数的一个注意事项是,必须按键对两个DataFrame进行排序。这是因为它将根据键的距离合并键,而未排序的DataFrame将抛出错误消息。
使用merge_asof类似于其他的合并操作,需要传递想要合并的DataFrame及其键名称。
pd.merge_asof(order, delivery, left_on = 'order_date',
right_on = 'delivery_date')
我们可以看到一些数据被合并了,但不是精确的值匹配。比如在第三行和第四行,order_date值为“2014-07-07”,但delivery_date为“2014-07-06”。
使用merge_asof会丢失数据。默认情况下它查找最接近匹配的已排序的键。在上面的代码中,与delivery_date不完全匹配的order_date试图在delivery_date列中找到与order_date值较小或相等的键。
delivery_date中小于等于order_date' 2014-07-07 '的值为' 2014-07-06 '。这就是为什么合并发生在这个键上。而order_date ' 2017-04-01 '和' 2017-04-05 '根本没有匹配,因为在delivery_date中没有小于或等于它们的值的值。
如果在正确的DataFrame中有多个重复的键,则只有最后一行用于合并过程。例如将更改delivery_date数据,使其具有多个不同产品的“2014-07-06”值。
delivery = pd.DataFrame({'delivery_date': ['2014-07-06', '2014-07-06', '2014-07-08', '2014-07-10'],
'product': ['Apple', 'Orange', 'Apple', 'Orange']})
然后我们将执行与之前相同的合并过程。
pd.merge_asof(order, delivery, left_on = 'order_date',
right_on = 'delivery_date')
可以看到,合并过程对Orange产品而不是Apple产品使用delivery_date ,尽管两者具有相同的键值。另外具有精确匹配的键也会受到影响,它们会选择最后一行键。
可以通过设置allow_exact_matches=False来关闭精确匹配合并。
pd.merge_asof(order, delivery, left_on = 'order_date',
right_on = 'delivery_date', allow_exact_matches = False)
通过使用direction 参数来改变查找键的策略。例如使用向前策略:
pd.merge_asof(order, delivery, left_on = 'order_date',
right_on = 'delivery_date', direction = 'forward')
向前策略与向后策略类似,不同之处在于该函数将通过查看大于或等于正确DataFrame键的值来尝试合并。
另一个可以使用的策略是就近策略。在这个策略中使用向后或向前策略;取绝对距离中最近的那个。如果有多个最接近的键或精确匹配,则使用向后策略。
pd.merge_asof(order, delivery, left_on = 'order_date',
right_on = 'delivery_date', direction = 'nearest')
最后还可以通过使用tolerance 参数来控制键之间的距离。
pd.merge_asof(order, delivery, left_on = 'order_date',
right_on = 'delivery_date', direction = 'forward',
tolerance = pd.Timedelta(1, 'd'))
在上面的示例中,只有第一行包含缺失值。这是因为order_date第一行与最近的日期delivery_date之间的距离大于一天。第二行成功合并,因为只差一天。
总结
Pandas函数提供了Merge函数可以轻松的帮助我们合并数据,而merge_ordered函数和merge_asof可以帮助我们进行更加定制化的合并工作,虽然这两个函数可能并不常见,但是它们的确在一些特殊的需求上非常的好用。
作者:Cornellius Yudha Wijaya