一、列表切片(一维数组)
1.1、切片原理
列表切片是从原始列表中提取列表的一部分的过程。在列表切片中,我们将根据所需内容(如,从何处开始,结束以及增量进行切片)剪切列表。Python中符合序列的有序序列都支持切片(slice),例如列表,字符串,元组。
规则:
存储对象[start : end : step]
start : 起始索引,从0开始,-1表示结束
end:结束索引,不包含
step:步长;步长为正时,从左向右取值。步长为负时,反向取值
1.2、切片使用
1.2.1、获取列表中的元素
>>> l1 =[3,5,7,10,13,15,17,20,23,25]>>> l1
[3,5,7,10,13,15,17,20,23,25]>>> midd_num=int(len(l1)/2)>>> midd_num
5>>> l1[midd_num:]# 获取下标 5 及其之后的数据[15,17,20,23,25]>>> l1[:midd_num]# 获取下标 5 之前的数据[3,5,7,10,13]>>> l1[-1]# 获取列表最后一个数据25>>> l1[-2]# 获取列表逆序第二个数据23>>> l1[-2:]# 获取列表逆序后两个数据[23,25]>>> l1[2:8]# 获取列表3-8d的数据[7,10,13,15,17,20]>>> l1[::2]# 获取整个列表且步长为2[3,7,13,17,23]>>> l1[1::2]# 从第二个开始获取整个列表且步长为2[5,10,15,20,25]>>> l1[0:90:2]# !!!不存在越界问题,体现了健壮性[3,7,13,17,23]
1.2.2、列表逆序
通过设置步长为
-1
实现,如下:
>>> l1[::-1][25,23,20,17,15,13,10,7,5,3]
1.2.3、修改列表元素
切片赋值的办法实现,如下:
>>> l1
[3,5,7,10,13,15,17,20,23,25]>>> l1[0:1][3]>>> l1[0:1]=["hello"]>>> l1
['hello',5,7,10,13,15,17,20,23,25]>>> l1[1:2][5]>>> l1[1:2]="world"# 注意赋值类型需要为列表>>> l1
['hello','w','o','r','l','d',7,10,13,15,17,20,23,25]>>> l1[0:2][3,5]>>> l1[0:2]=["hello","world"]# 同时修改多个数据>>> l1
['hello','world',7,10,13,15,17,20,23,25]
1.2.4、插入新元素
在空白处插入,如下:
>>> l1=[3,5,7,10,13,15,17,20,23,25]>>> l1[:0]=["nihao"]>>> l1
['nihao',3,5,7,10,13,15,17,20,23,25]>>> l1=[3,5,7,10,13,15,17,20,23,25]>>> l1[:1]=["nihao","shijie"]# 会替换掉 '3'>>> l1
['nihao','shijie',5,7,10,13,15,17,20,23,25]>>> l1=[3,5,7,10,13,15,17,20,23,25]>>> l1[:1][3]>>> l1[:0]=["nihao","shijie"]# 插入多个>>> l1
['nihao','shijie',3,5,7,10,13,15,17,20,23,25]>>> l1=[3,5,7,10,13,15,17,20,23,25]>>> l1[5]15>>> l1[5:5]=["nihao","shijie"]>>> l1
[3,5,7,10,13,'nihao','shijie',15,17,20,23,25]
1.2.5、删除元素
给列表某个值赋空值,如下:
>>> l1=[3,5,7,10,13,15,17,20,23,25]>>> l1[:3][3,5,7]>>> l1[:3]=[]>>> l1
[10,13,15,17,20,23,25]>>> l1=[3,5,7,10,13,15,17,20,23,25]>>> l1[:3][3,5,7]>>>del(l1[:3])# 同样可以实现上面结果>>> l1
[10,13,15,17,20,23,25]
1.2.6、复制元素(浅拷贝)
>>> l1=[3,5,7,10,13,15,17,20,23,25]>>> l2=l1[:]>>> l2
[3,5,7,10,13,15,17,20,23,25]>>> l2 is l1
False>>> l2=l1
>>> l2 is l1
True>>>import copy
>>> l2=copy.copy(l1)# 浅拷贝>>> l2 is l1
False>>> l2=copy.deepcopy(l1)# 深拷贝>>> l2 is l1
False
二、多维数组切片
多为数组的切片操作与一维数组一致,不同维度上的操作使用’,'隔开就好
2.1、认识数组的维度
arr.ndim
>>> ar1=np.arange(12).reshape((4,3))>>> ar1
array([[0,1,2],[3,4,5],[6,7,8],[9,10,11]])>>> ar1.ndim
2>>> ar1=np.arange(27).reshape((3,3,3))>>> ar1
array([[[0,1,2],[3,4,5],[6,7,8]],[[9,10,11],[12,13,14],[15,16,17]],[[18,19,20],[21,22,23],[24,25,26]]])>>> ar1.ndim
3>>> ar1[:]# 0 维取全部
array([[[0,1,2],[3,4,5],[6,7,8]],[[9,10,11],[12,13,14],[15,16,17]],[[18,19,20],[21,22,23],[24,25,26]]])>>> ar1[:,0]# 获取每维数组的第一行
array([[0,1,2],[9,10,11],[18,19,20]])>>> ar1[:,0,0]# 获取每维数组的第一行的第一个元素
array([0,9,18])# 认识数组的维度可以查看ar1.ndim ,也可以查看数组的'['层数
2.2、多维数组切片使用
2.2.1、获取列表中的元素
>>> ar1=np.arange(27).reshape((3,3,3))>>> ar1
array([[[0,1,2],[3,4,5],[6,7,8]],[[9,10,11],[12,13,14],[15,16,17]],[[18,19,20],[21,22,23],[24,25,26]]])>>> ar1[0]# 获取数组的0维
array([[0,1,2],[3,4,5],[6,7,8]])>>> ar1[1]# 获取数组的1维
array([[9,10,11],[12,13,14],[15,16,17]])>>> ar1[2]# 获取数组的2维
array([[18,19,20],[21,22,23],[24,25,26]])>>> ar1[0,0]
array([0,1,2])>>> ar1[0,0,1]1>>> ar1[1,2,1]16>>> ar1[1,0,0:2]
array([9,10])>>> ar1[1,0,-2]10>>> ar1[1,0,-2:]
array([10,11])
2.2.2、数组逆序
>>> ar1=np.arange(27).reshape((3,3,3))>>> ar1
array([[[0,1,2],[3,4,5],[6,7,8]],[[9,10,11],[12,13,14],[15,16,17]],[[18,19,20],[21,22,23],[24,25,26]]])>>> ar1[1,0,::-1]# 第2维逆序
array([11,10,9])>>> ar1[1,::-1]# 第1 维逆序
array([[15,16,17],[12,13,14],[9,10,11]])>>> ar1[::-1]# 整个数组逆序
array([[[18,19,20],[21,22,23],[24,25,26]],[[9,10,11],[12,13,14],[15,16,17]],[[0,1,2],[3,4,5],[6,7,8]]])>>> ar1[::-1,::-1]# 第0、1维逆序
array([[[24,25,26],[21,22,23],[18,19,20]],[[15,16,17],[12,13,14],[9,10,11]],[[6,7,8],[3,4,5],[0,1,2]]])>>> ar1[::-1,::-1,::-1]# 第0、1和2维逆序
array([[[26,25,24],[23,22,21],[20,19,18]],[[17,16,15],[14,13,12],[11,10,9]],[[8,7,6],[5,4,3],[2,1,0]]])>>> ar1[1,:,:]
array([[9,10,11],[12,13,14],[15,16,17]])>>> ar1[1,...]# 对于大于等于三维的数组,可以使用...来简化操作
array([[9,10,11],[12,13,14],[15,16,17]])
2.2.3、修改列表元素
>>> ar1[0,0,1]=999>>> ar1
array([[[0,999,2],[3,4,5],[6,7,8]],[[9,10,11],[12,13,14],[15,16,17]],[[18,19,20],[21,22,23],[24,25,26]]])>>> ar1[0,1]
array([3,4,5])>>> ar1[0,1]=[123,456,789]>>> ar1
array([[[0,999,2],[123,456,789],[6,7,8]],[[9,10,11],[12,13,14],[15,16,17]],[[18,19,20],[21,22,23],[24,25,26]]])
2.2.4、插入新元素
多维数组空白处插入数据不生效
>>> ar1[0,0,:0]=[58]>>> ar1[0,0]
array([0,1,2])>>> ar1
array([[[0,1,2],[3,4,5],[6,7,8]],[[9,10,11],[12,13,14],[15,16,17]],[[18,19,20],[21,22,23],[24,25,26]]])
2.2.5、删除元素
多维数组无法直接删除,报错如下:
>>> ar1[0,1,2]=[]
Traceback (most recent call last):
File "<stdin>", line 1,in<module>
ValueError: setting an array element with a sequence.
2.2.6、复制元素(浅拷贝)
>>> ar1
array([[[0,1,2],[3,4,5],[6,7,8]],[[9,10,11],[12,13,14],[15,16,17]],[[18,19,20],[21,22,23],[24,25,26]]])>>> ar3=ar1[:]>>> ar3
array([[[0,1,2],[3,4,5],[6,7,8]],[[9,10,11],[12,13,14],[15,16,17]],[[18,19,20],[21,22,23],[24,25,26]]])>>> ar3 is ar1
False>>> ar3=ar1
>>> ar3 is ar1
True>>>import copy
>>> ar3=copy.copy(ar1)>>> ar3
array([[[0,1,2],[3,4,5],[6,7,8]],[[9,10,11],[12,13,14],[15,16,17]],[[18,19,20],[21,22,23],[24,25,26]]])>>> ar3 is ar1
False>>> ar3=copy.deepcopy(ar1)>>> ar3
array([[[0,1,2],[3,4,5],[6,7,8]],[[9,10,11],[12,13,14],[15,16,17]],[[18,19,20],[21,22,23],[24,25,26]]])>>> ar3 is ar1
False
三、参考文档
1、https://blog.csdn.net/hlx20080808/article/details/127610664
2、http://coolpython.net/data_analysis/numpy/numpy-del-item.html
3、https://www.bbsmax.com/A/gAJGw4g1JZ/
4、https://blog.csdn.net/weixin_36670529/article/details/111307004
版权归原作者 岳来 所有, 如有侵权,请联系我们删除。