0


AI数字人硅基数字人模型训练模型网络结构和训练代码

这种训练的时候加入mask,输出的时候根据mask做处理,直接mask回帖
conv.py

import torch
from torch import nn
from torch.nn import functional as F

class DepthwiseSeparableConv2d(nn.Module):
def init(self, in_channels, out_channels, kernel_size, stride=1, padding=0):
super(DepthwiseSeparableConv2d, self).init()
self.depthwise = nn.Sequential(
nn.Conv2d(in_channels, in_channels, kernel_size=kernel_size, stride=stride, padding=padding,groups=in_channels), # ��Ⱦ���
nn.BatchNorm2d(in_channels),
nn.ReLU6(inplace=True))

  1. self.pointwise = nn.Sequential(
  2. nn.Conv2d(in_channels, out_channels, kernel_size=1), # ������
  3. nn.BatchNorm2d(out_channels),
  4. nn.ReLU6(inplace=True))
  5. def forward(self, x):
  6. x = self.depthwise(x)
  7. x = self.pointwise(x)
  8. return x

class Conv2d(nn.Module):
def init(self, cin, cout, kernel_size, stride, padding, residual=False, depth_wise = False, *args, **kwargs):
super().init(*args, **kwargs)

  1. self.residual = residual
  2. self.depth_wise =depth_wise
  3. if depth_wise:
  4. self.conv_block = DepthwiseSeparableConv2d(cin, cout, kernel_size, stride, padding)
  5. else:
  6. self.conv_block = nn.Sequential(
  7. nn.Conv2d(cin, cout, kernel_size, stride, padding),
  8. nn.BatchNorm2d(cout))
  9. self.act = nn.ReLU6()
  10. def forward(self, x):
  11. out = self.conv_block(x)
  12. if self.residual:
  13. out += x
  14. return out if self.depth_wise else self.act(out)

class nonorm_Conv2d(nn.Module):
def init(self, cin, cout, kernel_size, stride, padding, residual=False, *args, **kwargs):
super().init(*args, **kwargs)
self.conv_block = nn.Sequential(
nn.Conv2d(cin, cout, kernel_size, stride, padding),
)
self.act = nn.LeakyReLU(0.01, inplace=True)

  1. def forward(self, x):
  2. out = self.conv_block(x)
  3. return self.act(out)

class Conv2dTranspose(nn.Module):
def init(self, cin, cout, kernel_size, stride, padding, output_padding=0, *args, **kwargs):
super().init(*args, **kwargs)
self.conv_block = nn.Sequential(
nn.ConvTranspose2d(cin, cout, kernel_size, stride, padding, output_padding),
nn.BatchNorm2d(cout)
)
self.act = nn.ReLU()

  1. def forward(self, x):
  2. out = self.conv_block(x)
  3. return self.act(out)

wav2lip.py
import torch
from torch import nn
from torch.nn import functional as F
import math

from models.conv import Conv2dTranspose, Conv2d, nonorm_Conv2d

class Wav2Lip(nn.Module):
def init(self):
super(Wav2Lip, self).init()

  1. self.face_encoder_blocks = nn.ModuleList([
  2. nn.Sequential(Conv2d(6, 16, kernel_size=7, stride=1, padding=3, depth_wise=True)), # 96,96 # 288,192 # 144,96
  3. nn.Sequential(Conv2d(16, 32, kernel_size=3, stride=2, padding=1, depth_wise=True), # 48,48 # 144,96 # 72,48
  4. Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True, depth_wise=True),
  5. Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True, depth_wise=True)),
  6. nn.Sequential(Conv2d(32, 64, kernel_size=3, stride=2, padding=1, depth_wise=True), # 24,24 # 72,48 # 36,24
  7. Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True, depth_wise=True),
  8. Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True, depth_wise=True),
  9. Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True, depth_wise=True)),
  10. nn.Sequential(Conv2d(64, 128, kernel_size=3, stride=2, padding=1, depth_wise=True), # 12,12 # 36,24 #18,12
  11. Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True, depth_wise=True),
  12. Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True, depth_wise=True)),
  13. nn.Sequential(Conv2d(128, 256, kernel_size=3, stride=2, padding=1, depth_wise=True), # 6,6 #18,12 #9,6
  14. Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True, depth_wise=True),
  15. Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True, depth_wise=True)),
  16. # nn.Sequential(Conv2d(256, 512, kernel_size=3, stride=2, padding=1, depth_wise=True), # 6,6 #9,6
  17. # Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True, depth_wise=True),
  18. # Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True, depth_wise=True)),
  19. # nn.Sequential(Conv2d(512, 512, kernel_size=3, stride=2, padding=1, depth_wise=True), # 3,3 #5,3
  20. # Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True, depth_wise=True),),
  21. #
  22. # nn.Sequential(Conv2d(512, 512, kernel_size=3, stride=(2, 1), padding=1, depth_wise=True), # 3,3 #3,3
  23. # Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True, depth_wise=True),),
  24. #
  25. # nn.Sequential(Conv2d(512, 512, kernel_size=3, stride=1, padding=0, depth_wise=True), # 1, 1
  26. # Conv2d(512, 512, kernel_size=1, stride=1, padding=0, depth_wise=True)),
  27. ])
  28. self.audio_encoder = nn.Sequential(
  29. Conv2d(1, 32, kernel_size=3, stride=1, padding=1, depth_wise=False), #80,16
  30. Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True, depth_wise=False),
  31. Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True, depth_wise=False),
  32. Conv2d(32, 64, kernel_size=3, stride=(3, 1), padding=1, depth_wise=False), #27,16
  33. Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True, depth_wise=False),
  34. Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True, depth_wise=False),
  35. Conv2d(64, 128, kernel_size=3, stride=3, padding=1, depth_wise=False), #9,6
  36. Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True, depth_wise=False),
  37. Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True, depth_wise=False),
  38. Conv2d(128, 256, kernel_size=3, stride=1, padding=1, depth_wise=False), #3,3
  39. Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=False, depth_wise=False),
  40. # Conv2d(256, 512, kernel_size=1, stride=1, padding=0, depth_wise=False), #1,1
  41. # Conv2d(512, 512, kernel_size=1, stride=1, padding=0, depth_wise=False), #1,1
  42. )
  43. self.face_decoder_blocks = nn.ModuleList([
  44. nn.Sequential(Conv2d(256, 256, kernel_size=1, stride=1, padding=0, depth_wise=False),),
  45. # nn.Sequential(Conv2dTranspose(1024, 512, kernel_size=3, stride=1, padding=0), # 3,3
  46. # Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True, depth_wise=True),),
  47. #
  48. # nn.Sequential(Conv2dTranspose(1024, 512, kernel_size=3, stride=(2, 1), padding=1),
  49. # Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True, depth_wise=True),), # 5, 3
  50. #
  51. # nn.Sequential(Conv2dTranspose(1024, 512, kernel_size=3, stride=2, padding=1, output_padding=(0, 1)),
  52. # Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True, depth_wise=True),
  53. # Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True, depth_wise=True),), # 9, 6
  54. # nn.Sequential(Conv2dTranspose(1024, 512, kernel_size=3, stride=2, padding=1, output_padding=1),
  55. # Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True, depth_wise=True),
  56. # Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True, depth_wise=True),), # 18, 12
  57. nn.Sequential(Conv2dTranspose(512, 384, kernel_size=3, stride=2, padding=1, output_padding=1),
  58. Conv2d(384, 384, kernel_size=3, stride=1, padding=1, residual=True, depth_wise=True),
  59. Conv2d(384, 384, kernel_size=3, stride=1, padding=1, residual=True, depth_wise=True),), # 36, 24
  60. nn.Sequential(Conv2dTranspose(512, 256, kernel_size=3, stride=2, padding=1, output_padding=1),
  61. Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True, depth_wise=True),
  62. Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True, depth_wise=True),), # 72, 48
  63. nn.Sequential(Conv2dTranspose(320, 128, kernel_size=3, stride=2, padding=1, output_padding=1),
  64. Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True, depth_wise=True),
  65. Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True, depth_wise=True),), # 144, 96
  66. nn.Sequential(Conv2dTranspose(160, 64, kernel_size=3, stride=2, padding=1, output_padding=1),
  67. Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True, depth_wise=True),
  68. Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True, depth_wise=True),),]) # 288,192
  69. self.output_block = nn.Sequential(Conv2d(80, 32, kernel_size=3, stride=1, padding=1, depth_wise=True),
  70. nn.Conv2d(32, 3, kernel_size=1, stride=1, padding=0),
  71. nn.Sigmoid())
  72. def forward(self, audio_sequences, face_sequences):
  73. # audio_sequences = (B, T, 1, 80, 16)
  74. B = audio_sequences.size(0)
  75. input_dim_size = len(face_sequences.size())
  76. if input_dim_size > 4:
  77. audio_sequences = torch.cat([audio_sequences[:, i] for i in range(audio_sequences.size(1))], dim=0)
  78. face_sequences = torch.cat([face_sequences[:, :, i] for i in range(face_sequences.size(2))], dim=0)
  79. audio_embedding = self.audio_encoder(audio_sequences) # B, 512, 1, 1
  80. feats = []
  81. x = face_sequences
  82. for f in self.face_encoder_blocks:
  83. x = f(x)
  84. feats.append(x)
  85. x = audio_embedding
  86. for f in self.face_decoder_blocks:
  87. x = f(x)
  88. try:
  89. x = torch.cat((x, feats[-1]), dim=1)
  90. except Exception as e:
  91. print(x.size())
  92. print(feats[-1].size())
  93. raise e
  94. feats.pop()
  95. x = self.output_block(x)
  96. if input_dim_size > 4:
  97. x = torch.split(x, B, dim=0) # [(B, C, H, W)]
  98. outputs = torch.stack(x, dim=2) # (B, C, T, H, W)
  99. else:
  100. outputs = x
  101. return outputs

class Wav2Lip_disc_qual(nn.Module):
def init(self):
super(Wav2Lip_disc_qual, self).init()

  1. self.face_encoder_blocks = nn.ModuleList([
  2. nn.Sequential(nonorm_Conv2d(3, 32, kernel_size=7, stride=1, padding=3)), # 144,192
  3. nn.Sequential(nonorm_Conv2d(32, 64, kernel_size=5, stride=(1, 2), padding=2), # 144,96
  4. nonorm_Conv2d(64, 64, kernel_size=5, stride=1, padding=2)),
  5. nn.Sequential(nonorm_Conv2d(64, 128, kernel_size=5, stride=2, padding=2), # 72,48
  6. nonorm_Conv2d(128, 128, kernel_size=5, stride=1, padding=2)),
  7. nn.Sequential(nonorm_Conv2d(128, 256, kernel_size=5, stride=2, padding=2), # 36,24
  8. nonorm_Conv2d(256, 256, kernel_size=5, stride=1, padding=2)),
  9. nn.Sequential(nonorm_Conv2d(256, 512, kernel_size=3, stride=2, padding=1), # 18,12
  10. nonorm_Conv2d(512, 512, kernel_size=3, stride=1, padding=1)),
  11. nn.Sequential(nonorm_Conv2d(512, 512, kernel_size=3, stride=2, padding=1), # 9,6
  12. nonorm_Conv2d(512, 512, kernel_size=3, stride=1, padding=1),),
  13. nn.Sequential(nonorm_Conv2d(512, 512, kernel_size=3, stride=2, padding=1), # 5,3
  14. nonorm_Conv2d(512, 512, kernel_size=3, stride=1, padding=1),),
  15. nn.Sequential(nonorm_Conv2d(512, 512, kernel_size=3, stride=(2, 1), padding=1), # 3,3
  16. nonorm_Conv2d(512, 512, kernel_size=3, stride=1, padding=1),),
  17. nn.Sequential(nonorm_Conv2d(512, 512, kernel_size=3, stride=1, padding=0), # 1, 1
  18. nonorm_Conv2d(512, 512, kernel_size=1, stride=1, padding=0)),])
  19. self.binary_pred = nn.Sequential(nn.Conv2d(512, 1, kernel_size=1, stride=1, padding=0), nn.Sigmoid())
  20. self.label_noise = .0
  21. def get_lower_half(self, face_sequences):
  22. return face_sequences[:, :, face_sequences.size(2)//2:]
  23. def to_2d(self, face_sequences):
  24. B = face_sequences.size(0)
  25. face_sequences = torch.cat([face_sequences[:, :, i] for i in range(face_sequences.size(2))], dim=0)
  26. return face_sequences
  27. def perceptual_forward(self, false_face_sequences):
  28. false_face_sequences = self.to_2d(false_face_sequences)
  29. false_face_sequences = self.get_lower_half(false_face_sequences)
  30. false_feats = false_face_sequences
  31. for f in self.face_encoder_blocks:
  32. false_feats = f(false_feats)
  33. false_pred_loss = F.binary_cross_entropy(self.binary_pred(false_feats).view(len(false_feats), -1),
  34. torch.ones((len(false_feats), 1)).cuda())
  35. return false_pred_loss
  36. def forward(self, face_sequences):
  37. face_sequences = self.to_2d(face_sequences)
  38. face_sequences = self.get_lower_half(face_sequences)
  39. x = face_sequences
  40. for f in self.face_encoder_blocks:
  41. x = f(x)
  42. return self.binary_pred(x).view(len(x), -1)

在这里插入图片描述

请添加图片描述


本文转载自: https://blog.csdn.net/ebdiy3119/article/details/140275228
版权归原作者 好友hy93119 所有, 如有侵权,请联系我们删除。

“AI数字人硅基数字人模型训练模型网络结构和训练代码”的评论:

还没有评论