0


AI数字人硅基数字人模型训练模型网络结构和训练代码

这种训练的时候加入mask,输出的时候根据mask做处理,直接mask回帖
conv.py

import torch
from torch import nn
from torch.nn import functional as F

class DepthwiseSeparableConv2d(nn.Module):
def init(self, in_channels, out_channels, kernel_size, stride=1, padding=0):
super(DepthwiseSeparableConv2d, self).init()
self.depthwise = nn.Sequential(
nn.Conv2d(in_channels, in_channels, kernel_size=kernel_size, stride=stride, padding=padding,groups=in_channels), # ��Ⱦ���
nn.BatchNorm2d(in_channels),
nn.ReLU6(inplace=True))

    self.pointwise = nn.Sequential(
                        nn.Conv2d(in_channels, out_channels, kernel_size=1),  # ������
                        nn.BatchNorm2d(out_channels),
                        nn.ReLU6(inplace=True))

def forward(self, x):
    x = self.depthwise(x)
    x = self.pointwise(x)
    return x

class Conv2d(nn.Module):
def init(self, cin, cout, kernel_size, stride, padding, residual=False, depth_wise = False, *args, **kwargs):
super().init(*args, **kwargs)

    self.residual = residual
    self.depth_wise =depth_wise

    if depth_wise:
        self.conv_block = DepthwiseSeparableConv2d(cin, cout, kernel_size, stride, padding)
    else:
        self.conv_block = nn.Sequential(
                nn.Conv2d(cin, cout, kernel_size, stride, padding),
                nn.BatchNorm2d(cout))
        self.act = nn.ReLU6()

def forward(self, x):
    out = self.conv_block(x)
    if self.residual:
        out += x
    return out if self.depth_wise else self.act(out)

class nonorm_Conv2d(nn.Module):
def init(self, cin, cout, kernel_size, stride, padding, residual=False, *args, **kwargs):
super().init(*args, **kwargs)
self.conv_block = nn.Sequential(
nn.Conv2d(cin, cout, kernel_size, stride, padding),
)
self.act = nn.LeakyReLU(0.01, inplace=True)

def forward(self, x):
    out = self.conv_block(x)
    return self.act(out)

class Conv2dTranspose(nn.Module):
def init(self, cin, cout, kernel_size, stride, padding, output_padding=0, *args, **kwargs):
super().init(*args, **kwargs)
self.conv_block = nn.Sequential(
nn.ConvTranspose2d(cin, cout, kernel_size, stride, padding, output_padding),
nn.BatchNorm2d(cout)
)
self.act = nn.ReLU()

def forward(self, x):
    out = self.conv_block(x)
    return self.act(out)

wav2lip.py
import torch
from torch import nn
from torch.nn import functional as F
import math

from models.conv import Conv2dTranspose, Conv2d, nonorm_Conv2d

class Wav2Lip(nn.Module):
def init(self):
super(Wav2Lip, self).init()

    self.face_encoder_blocks = nn.ModuleList([
        nn.Sequential(Conv2d(6, 16, kernel_size=7, stride=1, padding=3, depth_wise=True)), # 96,96       # 288,192    # 144,96

        nn.Sequential(Conv2d(16, 32, kernel_size=3, stride=2, padding=1, depth_wise=True), # 48,48       # 144,96     # 72,48
        Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True, depth_wise=True),
        Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True, depth_wise=True)),

        nn.Sequential(Conv2d(32, 64, kernel_size=3, stride=2, padding=1, depth_wise=True),    # 24,24    # 72,48     # 36,24
        Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True, depth_wise=True),
        Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True, depth_wise=True),
        Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True, depth_wise=True)),

        nn.Sequential(Conv2d(64, 128, kernel_size=3, stride=2, padding=1, depth_wise=True),   # 12,12     # 36,24   #18,12
        Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True, depth_wise=True),
        Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True, depth_wise=True)),

        nn.Sequential(Conv2d(128, 256, kernel_size=3, stride=2, padding=1, depth_wise=True),       # 6,6   #18,12   #9,6
        Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True, depth_wise=True),
        Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True, depth_wise=True)),

        # nn.Sequential(Conv2d(256, 512, kernel_size=3, stride=2, padding=1, depth_wise=True),       # 6,6   #9,6
        # Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True, depth_wise=True),
        # Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True, depth_wise=True)),

        # nn.Sequential(Conv2d(512, 512, kernel_size=3, stride=2, padding=1, depth_wise=True),     # 3,3    #5,3
        # Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True, depth_wise=True),),
        #
        # nn.Sequential(Conv2d(512, 512, kernel_size=3, stride=(2, 1), padding=1, depth_wise=True),     # 3,3    #3,3
        # Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True, depth_wise=True),),
        #
        # nn.Sequential(Conv2d(512, 512, kernel_size=3, stride=1, padding=0, depth_wise=True),     # 1, 1
        # Conv2d(512, 512, kernel_size=1, stride=1, padding=0, depth_wise=True)),
        ])

    self.audio_encoder = nn.Sequential(
        Conv2d(1, 32, kernel_size=3, stride=1, padding=1, depth_wise=False),                   #80,16
        Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True, depth_wise=False),
        Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True, depth_wise=False),

        Conv2d(32, 64, kernel_size=3, stride=(3, 1), padding=1, depth_wise=False),              #27,16
        Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True, depth_wise=False),
        Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True, depth_wise=False),

        Conv2d(64, 128, kernel_size=3, stride=3, padding=1, depth_wise=False),                  #9,6
        Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True, depth_wise=False),
        Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True, depth_wise=False),

        Conv2d(128, 256, kernel_size=3, stride=1, padding=1, depth_wise=False),                 #3,3
        Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=False, depth_wise=False),

        # Conv2d(256, 512, kernel_size=1, stride=1, padding=0, depth_wise=False),                #1,1
        # Conv2d(512, 512, kernel_size=1, stride=1, padding=0, depth_wise=False),                #1,1
        )

    self.face_decoder_blocks = nn.ModuleList([
        nn.Sequential(Conv2d(256, 256, kernel_size=1, stride=1, padding=0, depth_wise=False),),

        # nn.Sequential(Conv2dTranspose(1024, 512, kernel_size=3, stride=1, padding=0), # 3,3
        # Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True, depth_wise=True),),
        #
        # nn.Sequential(Conv2dTranspose(1024, 512, kernel_size=3, stride=(2, 1), padding=1),
        # Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True, depth_wise=True),), # 5, 3
        #
        # nn.Sequential(Conv2dTranspose(1024, 512, kernel_size=3, stride=2, padding=1, output_padding=(0, 1)),
        # Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True, depth_wise=True),
        # Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True, depth_wise=True),), # 9, 6

        # nn.Sequential(Conv2dTranspose(1024, 512, kernel_size=3, stride=2, padding=1, output_padding=1),
        # Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True, depth_wise=True),
        # Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True, depth_wise=True),), # 18, 12

        nn.Sequential(Conv2dTranspose(512, 384, kernel_size=3, stride=2, padding=1, output_padding=1),
        Conv2d(384, 384, kernel_size=3, stride=1, padding=1, residual=True, depth_wise=True),
        Conv2d(384, 384, kernel_size=3, stride=1, padding=1, residual=True, depth_wise=True),), # 36, 24

        nn.Sequential(Conv2dTranspose(512, 256, kernel_size=3, stride=2, padding=1, output_padding=1), 
        Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True, depth_wise=True),
        Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True, depth_wise=True),), # 72, 48

        nn.Sequential(Conv2dTranspose(320, 128, kernel_size=3, stride=2, padding=1, output_padding=1), 
        Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True, depth_wise=True),
        Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True, depth_wise=True),), # 144, 96

        nn.Sequential(Conv2dTranspose(160, 64, kernel_size=3, stride=2, padding=1, output_padding=1),
        Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True, depth_wise=True),
        Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True, depth_wise=True),),]) # 288,192

    self.output_block = nn.Sequential(Conv2d(80, 32, kernel_size=3, stride=1, padding=1, depth_wise=True),
        nn.Conv2d(32, 3, kernel_size=1, stride=1, padding=0),
        nn.Sigmoid()) 

def forward(self, audio_sequences, face_sequences):
    # audio_sequences = (B, T, 1, 80, 16)
    B = audio_sequences.size(0)

    input_dim_size = len(face_sequences.size())
    if input_dim_size > 4:
        audio_sequences = torch.cat([audio_sequences[:, i] for i in range(audio_sequences.size(1))], dim=0)
        face_sequences = torch.cat([face_sequences[:, :, i] for i in range(face_sequences.size(2))], dim=0)

    audio_embedding = self.audio_encoder(audio_sequences) # B, 512, 1, 1

    feats = []
    x = face_sequences
    for f in self.face_encoder_blocks:
        x = f(x)
        feats.append(x)

    x = audio_embedding
    for f in self.face_decoder_blocks:
        x = f(x)
        try:
            x = torch.cat((x, feats[-1]), dim=1)
        except Exception as e:
            print(x.size())
            print(feats[-1].size())
            raise e
        
        feats.pop()

    x = self.output_block(x)

    if input_dim_size > 4:
        x = torch.split(x, B, dim=0) # [(B, C, H, W)]
        outputs = torch.stack(x, dim=2) # (B, C, T, H, W)

    else:
        outputs = x
        
    return outputs

class Wav2Lip_disc_qual(nn.Module):
def init(self):
super(Wav2Lip_disc_qual, self).init()

    self.face_encoder_blocks = nn.ModuleList([
        nn.Sequential(nonorm_Conv2d(3, 32, kernel_size=7, stride=1, padding=3)), # 144,192

        nn.Sequential(nonorm_Conv2d(32, 64, kernel_size=5, stride=(1, 2), padding=2), # 144,96
        nonorm_Conv2d(64, 64, kernel_size=5, stride=1, padding=2)),

        nn.Sequential(nonorm_Conv2d(64, 128, kernel_size=5, stride=2, padding=2),    # 72,48
        nonorm_Conv2d(128, 128, kernel_size=5, stride=1, padding=2)),

        nn.Sequential(nonorm_Conv2d(128, 256, kernel_size=5, stride=2, padding=2),   # 36,24
        nonorm_Conv2d(256, 256, kernel_size=5, stride=1, padding=2)),

        nn.Sequential(nonorm_Conv2d(256, 512, kernel_size=3, stride=2, padding=1),       # 18,12
        nonorm_Conv2d(512, 512, kernel_size=3, stride=1, padding=1)),

        nn.Sequential(nonorm_Conv2d(512, 512, kernel_size=3, stride=2, padding=1),     # 9,6
        nonorm_Conv2d(512, 512, kernel_size=3, stride=1, padding=1),),

        nn.Sequential(nonorm_Conv2d(512, 512, kernel_size=3, stride=2, padding=1),     # 5,3
        nonorm_Conv2d(512, 512, kernel_size=3, stride=1, padding=1),),

        nn.Sequential(nonorm_Conv2d(512, 512, kernel_size=3, stride=(2, 1), padding=1),     # 3,3
        nonorm_Conv2d(512, 512, kernel_size=3, stride=1, padding=1),),
        
        nn.Sequential(nonorm_Conv2d(512, 512, kernel_size=3, stride=1, padding=0),     # 1, 1
        nonorm_Conv2d(512, 512, kernel_size=1, stride=1, padding=0)),])

    self.binary_pred = nn.Sequential(nn.Conv2d(512, 1, kernel_size=1, stride=1, padding=0), nn.Sigmoid())
    self.label_noise = .0

def get_lower_half(self, face_sequences):
    return face_sequences[:, :, face_sequences.size(2)//2:]

def to_2d(self, face_sequences):
    B = face_sequences.size(0)
    face_sequences = torch.cat([face_sequences[:, :, i] for i in range(face_sequences.size(2))], dim=0)
    return face_sequences

def perceptual_forward(self, false_face_sequences):
    false_face_sequences = self.to_2d(false_face_sequences)
    false_face_sequences = self.get_lower_half(false_face_sequences)

    false_feats = false_face_sequences
    for f in self.face_encoder_blocks:
        false_feats = f(false_feats)

    false_pred_loss = F.binary_cross_entropy(self.binary_pred(false_feats).view(len(false_feats), -1), 
                                    torch.ones((len(false_feats), 1)).cuda())

    return false_pred_loss

def forward(self, face_sequences):
    face_sequences = self.to_2d(face_sequences)
    face_sequences = self.get_lower_half(face_sequences)

    x = face_sequences
    for f in self.face_encoder_blocks:
        x = f(x)

    return self.binary_pred(x).view(len(x), -1)

在这里插入图片描述

请添加图片描述


本文转载自: https://blog.csdn.net/ebdiy3119/article/details/140275228
版权归原作者 好友hy93119 所有, 如有侵权,请联系我们删除。

“AI数字人硅基数字人模型训练模型网络结构和训练代码”的评论:

还没有评论