任务描述相机的抖动、快速运动的物体都会导致拍摄出模糊的图像,景深变化也会使图像进一步模糊。对于传统方法来说,要想估计出每个像素点对应的 “blur kernel” 几乎是不可行的。因此,传统方法常常需要对模糊源作出假设,将 “blur kernel” 参数化。显然,这类方法不足以解决实际中各种复杂因素引起的图像模糊。卷积神经网络能够从图像中提取出复杂的特征,从而使得模型能够适应各种场景。本教程以 CVPR2017 的 《Deep Multi-scale Convolutional Neural Network for Dynamic Scene Deblurring》 为例,来完成图像去模糊的任务。
运行环境本教程在 python3.7 和 pytorch1.5 环境下测试成功,理论上可以运行在 python3.6+ 和 pytorch1.x 环境下。 测试环境为GTX1080Ti显卡+cuda10.1,运行时要求显存>10G,pytorch(gpu版本
版权归原作者 程序员uu 所有, 如有侵权,请联系我们删除。