2024 IJCAI(International Joint Conference on Artificial Intelligence, 国际人工智能联合会议)在2024年8月3日-9日在韩国济州岛举行。
本文总结了IJCAI2024有关时空数据(Spatial-temporal) 的相关论文,如有疏漏,欢迎大家补充。
时空数据Topic:时空(交通)预测,气象预测,轨迹表示学习,轨迹恢复,信控优化,POI等
🌟【紧跟前沿】“时空探索之旅”与你一起探索时空奥秘!🚀
欢迎大家关注时空探索之旅时空探索之旅
1. Spatial-Temporal-Decoupled Masked Pre-training for Spatiotemporal Forecasting
链接:https://arxiv.org/abs/2312.00516
代码:https://github.com/Jimmy-7664/STD-MAE
作者:Haotian Gao, Renhe Jiang, Zheng Dong, Jinliang Deng, Yuxin Ma, Xuan Song
机构:东京大学,南方科技大学,悉尼大学
关键词:时空预测,自监督预训练,时空解耦,掩码自编码器,异质性
2. Multi-Modality Spatio-Temporal Forecasting via Self-Supervised Learning
链接:https://arxiv.org/abs/2405.03255
代码:https://github.com/beginner-sketch/MoSSL
作者:Jiewen Deng, Renhe Jiang, Jiaqi Zhang, Xuan Song
机构:南方科技大学,东京大学,吉林大学
关键词:多模态,时空栅格预测,自监督
3. SaSDim:Self-Adaptive Noise Scaling Diffusion Model for Spatial Time Series Imputation
链接:https://arxiv.org/abs/2309.01988
作者:Shunyang Zhang, Senzhang Wang, Xianzhen Tan, Renzhi Wang, Ruochen Liu, Jian Zhang, Jianxin Wang
机构:中南大学
关键词:时空插补,扩散模型
4. WeatherGNN: Exploiting Complicated Relationships in Numerical Weather Prediction Bias Correction
链接:https://arxiv.org/abs/2310.05517
作者:Binqing Wu, Weiqi Chen, Wenwei Wang, Bingqing Peng, Liang Sun, Ling Chen
机构:阿里巴巴达摩院,浙江大学
关键词:气象预测,空间依赖性,NWP
5. X-Light: Cross-City Traffic Signal Control Using Transformer on Transformer as Meta Multi-Agent Reinforcement Learner
链接:https://arxiv.org/abs/2404.12090
代码:https://github.com/AnonymousID-submission/X-Light
作者:Haoyuan Jiang, Ziyue Li, Hua Wei, Xuantang Xiong, Jingqing Ruan, Jiaming Lu, Hangyu Mao, Rui Zhao
机构:百度,科隆大学,亚利桑那州立大学,中科院自动化所,复旦大学,商汤,启元研究院
关键词:信控优化,跨城市可迁移性,元强化学习
6. Full Bayesian Significance Testing for Neural Networks in Traffic Forecasting
作者:Zehua Liu, Jingyuan Wang, Zimeng Li, Yue He
机构:北京航空航天大学,清华大学
关键词:交通预测,贝叶斯网络,显著性检测,不确定性量化
7. Towards Robust Trajectory Representations: Isolating Environmental Confounders with Causal Learning
链接:https://arxiv.org/abs/2404.14073
作者:Kang Luo, Yuanshao Zhu, Wei Chen, Kun Wang, Zhengyang Zhou, Sijie Ruan, Yuxuan Liang
机构:香港科技大学(广州),中国科学技术大学,北京理工大学
关键词:轨迹表示学习,稳健性,因果学习
8. Make Graph Neural Networks Great Again: A Generic Integration Paradigm of Topology-Free Patterns for Traffic Speed Prediction
链接:https://arxiv.org/abs/2406.16992
代码:https://github.com/ibizatomorrow/DCST
作者:Yicheng Zhou, Pengfei Wang, Hao Dong, Denghui Zhang, Dingqi Yang, Yanjie Fu, Pengyang Wang
关键词:交通速度预测,GNN,知识蒸馏
机构:澳门大学,中国科学院,斯蒂文斯理工学院,亚利桑那州立大学
9. Reframing Spatial Reasoning Evaluation in Language Models: A Real-World Simulation Benchmark for Qualitative Reasoning
链接:https://arxiv.org/abs/2405.15064
代码:https://github.com/Fangjun-Li/RoomSpace
作者:Fangjun Li, David Hogg, Anthony Cohn
机构:利兹大学
关键词:空间推理,语言模型
10. Personalized Federated Learning for Cross-city Traffic Prediction
作者:Yu Zhang, Hua Lu, Ning Liu, Yonghui Xu, Qingzhong Li, Lizhen Cui
关键词:交通预测,联邦学习,跨城市
11. Make Bricks with a Little Straw: Large-Scale Spatio-Temporal Graph Learning with Restricted GPU-Memory Capacity
作者:Binwu Wang, Pengkun Wang, Zhengyang Zhou, Zhe Zhao, Wei Xu, Yang Wang
机构:中国科学技术大学
关键词:交通预测,大规模时空图,子图
12. A Graph-based Representation Framework for Trajectory Recovery via Spatiotemporal Interval-Informed Seq2Seq
作者:Yaya Zhao, Kaiqi Zhao, Zhiqian Chen, Yuanyuan Zhang, Yalei Du, Xiaoling Lu
关键词:轨迹恢复,图表示框架
13. Learning Hierarchy-Enhanced POI Category Representations Using Disentangled Mobility Sequences
作者:Hongwei Jia, Meng Chen, Weiming Huang, Kai Zhao, Yongshun Gong
关键词:POI分类,表示学习
14. Exploring Urban Semantics: A Multimodal Model for POI Semantic Annotation with Street View Images and Place Names
作者:Dabin Zhang, Meng Chen, Weiming Huang, Yongshun Gong, Kai Zhao
关键词:POI分类,多模态
15. Counterfactual User Sequence Synthesis Augmented with Continuous Time Dynamic Preference Modeling for Sequential POI Recommendation
作者:Lianyong Qi, Yuwen Liu, Weiming Liu, Shichao Pei, Xiaolong Xu, Xuyun Zhang, Yingjie Wang, Wanchun Dou
关键词:POI推荐,反事实
16. KDDC: Knowledge-Driven Disentangled Causal Metric Learning for Pre-Travel Out-of-Town Recommendation
作者:Yinghui Liu, Guojiang Shen, Chengyong Cui, Zhenzhen Zhao, Xiao Han, Jiaxin Du, Xiangyu Zhao, Xiangjie Kong
关键词:POI推荐,旅行推荐
17. Enhancing Fine-Grained Urban Flow Inference via Incremental Neural Operator
作者:Qiang Gao, Xiaolong Song, Li Huang, Goce Trajcevski, Fan Zhou, Xueqin Chen
17. Enhancing Fine-Grained Urban Flow Inference via Incremental Neural Operator
作者:Qiang Gao, Xiaolong Song, Li Huang, Goce Trajcevski, Fan Zhou, Xueqin Chen
关键词:细粒度城市流量推理,算子学习
🌟【紧跟前沿】“时空探索之旅”与你一起探索时空奥秘!🚀
欢迎大家关注时空探索之旅时空探索之旅
版权归原作者 STLearner 所有, 如有侵权,请联系我们删除。