0


IJCAI 2024 | 时空数据(Spatial-Temporal)论文总结

2024 IJCAI(International Joint Conference on Artificial Intelligence, 国际人工智能联合会议)在2024年8月3日-9日在韩国济州岛举行。

本文总结了IJCAI2024有关时空数据(Spatial-temporal) 的相关论文,如有疏漏,欢迎大家补充。

时空数据Topic:时空(交通)预测,气象预测,轨迹表示学习,轨迹恢复,信控优化,POI等


🌟【紧跟前沿】“时空探索之旅”与你一起探索时空奥秘!🚀
欢迎大家关注时空探索之旅时空探索之旅在这里插入图片描述

1. Spatial-Temporal-Decoupled Masked Pre-training for Spatiotemporal Forecasting

链接https://arxiv.org/abs/2312.00516

代码https://github.com/Jimmy-7664/STD-MAE

作者:Haotian Gao, Renhe Jiang, Zheng Dong, Jinliang Deng, Yuxin Ma, Xuan Song

机构:东京大学,南方科技大学,悉尼大学

关键词:时空预测,自监督预训练,时空解耦,掩码自编码器,异质性

STD-MAE

2. Multi-Modality Spatio-Temporal Forecasting via Self-Supervised Learning

链接https://arxiv.org/abs/2405.03255

代码https://github.com/beginner-sketch/MoSSL

作者:Jiewen Deng, Renhe Jiang, Jiaqi Zhang, Xuan Song

机构:南方科技大学,东京大学,吉林大学

关键词:多模态,时空栅格预测,自监督

3. SaSDim:Self-Adaptive Noise Scaling Diffusion Model for Spatial Time Series Imputation

链接https://arxiv.org/abs/2309.01988

作者:Shunyang Zhang, Senzhang Wang, Xianzhen Tan, Renzhi Wang, Ruochen Liu, Jian Zhang, Jianxin Wang

机构:中南大学

关键词:时空插补,扩散模型

SASDIM

4. WeatherGNN: Exploiting Complicated Relationships in Numerical Weather Prediction Bias Correction

链接https://arxiv.org/abs/2310.05517

作者:Binqing Wu, Weiqi Chen, Wenwei Wang, Bingqing Peng, Liang Sun, Ling Chen

机构:阿里巴巴达摩院,浙江大学

关键词:气象预测,空间依赖性,NWP

WeatherGNN

5. X-Light: Cross-City Traffic Signal Control Using Transformer on Transformer as Meta Multi-Agent Reinforcement Learner

链接https://arxiv.org/abs/2404.12090

代码https://github.com/AnonymousID-submission/X-Light

作者:Haoyuan Jiang, Ziyue Li, Hua Wei, Xuantang Xiong, Jingqing Ruan, Jiaming Lu, Hangyu Mao, Rui Zhao

机构:百度,科隆大学,亚利桑那州立大学,中科院自动化所,复旦大学,商汤,启元研究院

关键词:信控优化,跨城市可迁移性,元强化学习

X-Light

6. Full Bayesian Significance Testing for Neural Networks in Traffic Forecasting

作者:Zehua Liu, Jingyuan Wang, Zimeng Li, Yue He

机构:北京航空航天大学,清华大学

关键词:交通预测,贝叶斯网络,显著性检测,不确定性量化

ST-nFBST

7. Towards Robust Trajectory Representations: Isolating Environmental Confounders with Causal Learning

链接https://arxiv.org/abs/2404.14073

作者:Kang Luo, Yuanshao Zhu, Wei Chen, Kun Wang, Zhengyang Zhou, Sijie Ruan, Yuxuan Liang

机构:香港科技大学(广州),中国科学技术大学,北京理工大学

关键词:轨迹表示学习,稳健性,因果学习

TrajCL

8. Make Graph Neural Networks Great Again: A Generic Integration Paradigm of Topology-Free Patterns for Traffic Speed Prediction

链接https://arxiv.org/abs/2406.16992

代码https://github.com/ibizatomorrow/DCST

作者:Yicheng Zhou, Pengfei Wang, Hao Dong, Denghui Zhang, Dingqi Yang, Yanjie Fu, Pengyang Wang

关键词:交通速度预测,GNN,知识蒸馏

机构:澳门大学,中国科学院,斯蒂文斯理工学院,亚利桑那州立大学

9. Reframing Spatial Reasoning Evaluation in Language Models: A Real-World Simulation Benchmark for Qualitative Reasoning

链接https://arxiv.org/abs/2405.15064

代码https://github.com/Fangjun-Li/RoomSpace

作者:Fangjun Li, David Hogg, Anthony Cohn

机构:利兹大学

关键词:空间推理,语言模型

10. Personalized Federated Learning for Cross-city Traffic Prediction

作者:Yu Zhang, Hua Lu, Ning Liu, Yonghui Xu, Qingzhong Li, Lizhen Cui

关键词:交通预测,联邦学习,跨城市

11. Make Bricks with a Little Straw: Large-Scale Spatio-Temporal Graph Learning with Restricted GPU-Memory Capacity

作者:Binwu Wang, Pengkun Wang, Zhengyang Zhou, Zhe Zhao, Wei Xu, Yang Wang

机构:中国科学技术大学

关键词:交通预测,大规模时空图,子图

12. A Graph-based Representation Framework for Trajectory Recovery via Spatiotemporal Interval-Informed Seq2Seq

作者:Yaya Zhao, Kaiqi Zhao, Zhiqian Chen, Yuanyuan Zhang, Yalei Du, Xiaoling Lu

关键词:轨迹恢复,图表示框架

13. Learning Hierarchy-Enhanced POI Category Representations Using Disentangled Mobility Sequences

作者:Hongwei Jia, Meng Chen, Weiming Huang, Kai Zhao, Yongshun Gong

关键词:POI分类,表示学习

14. Exploring Urban Semantics: A Multimodal Model for POI Semantic Annotation with Street View Images and Place Names

作者:Dabin Zhang, Meng Chen, Weiming Huang, Yongshun Gong, Kai Zhao

关键词:POI分类,多模态

15. Counterfactual User Sequence Synthesis Augmented with Continuous Time Dynamic Preference Modeling for Sequential POI Recommendation

作者:Lianyong Qi, Yuwen Liu, Weiming Liu, Shichao Pei, Xiaolong Xu, Xuyun Zhang, Yingjie Wang, Wanchun Dou

关键词:POI推荐,反事实

16. KDDC: Knowledge-Driven Disentangled Causal Metric Learning for Pre-Travel Out-of-Town Recommendation

作者:Yinghui Liu, Guojiang Shen, Chengyong Cui, Zhenzhen Zhao, Xiao Han, Jiaxin Du, Xiangyu Zhao, Xiangjie Kong

关键词:POI推荐,旅行推荐

17. Enhancing Fine-Grained Urban Flow Inference via Incremental Neural Operator

作者:Qiang Gao, Xiaolong Song, Li Huang, Goce Trajcevski, Fan Zhou, Xueqin Chen

17. Enhancing Fine-Grained Urban Flow Inference via Incremental Neural Operator

作者:Qiang Gao, Xiaolong Song, Li Huang, Goce Trajcevski, Fan Zhou, Xueqin Chen

关键词:细粒度城市流量推理,算子学习

🌟【紧跟前沿】“时空探索之旅”与你一起探索时空奥秘!🚀
欢迎大家关注时空探索之旅时空探索之旅在这里插入图片描述


本文转载自: https://blog.csdn.net/suzukiwudi/article/details/140910354
版权归原作者 STLearner 所有, 如有侵权,请联系我们删除。

“IJCAI 2024 | 时空数据(Spatial-Temporal)论文总结”的评论:

还没有评论