0


学习笔记 | 多层感知机(MLP)、Transformer

多层感知机(MLP)

一、多层感知机(MLP)原理简介

         多层感知机(MLP,Multilayer Perceptron)也叫人工神经网络(ANN,Artificial Neural Network),除了输入输出层,它中间可以有多个隐层,最简单的MLP只含一个隐层,即三层的结构,如下图:

在这里插入图片描述

    从上图可以看到,多层感知机层与层之间是全连接的。多层感知机最底层是输入层,中间是隐藏层,最后是输出层。 

    1)隐藏层的神经元怎么得来?

    首先它与输入层是全连接的,假设输入层用向量X表示,则隐藏层的输出就是 f (W1X+b1),W1是权重(也叫连接系数),b1是偏置,函数f 可以是常用的sigmoid函数或者tanh函数。

    2)输出层,输出层与隐藏层是什么关系?

  其实隐藏层到输出层可以看成是一个多类别的逻辑回归,也即softmax回归,所以输出层的输出就是softmax(W2X1+b2),X1表示隐藏层的输出f(W1X+b1)。

   MLP整个模型就是这样子的,上面说的这个三层的MLP用公式总结起来就是

,函数G是softmax。

    因此,MLP所有的参数就是各个层之间的连接权重以及偏置,包括W1、b1、W2、b2。对于一个具体的问题,怎么确定这些参数?求解最佳的参数是一个最优化问题,解决最优化问题,最简单的就是梯度下降法了(SGD):首先随机初始化所有参数,然后迭代地训练,不断地计算梯度和更新参数,直到满足某个条件为止(比如误差足够小、迭代次数足够多时)。这个过程涉及到代价函数、规则化(Regularization)、学习速率(learning rate)、梯度计算等。

    在有明确的训练样本后,网络的输入层结点数(特征的数量)和输出层结点数(因变量的数量)便已确定,因此神经网络结构设计主要解决**设置几个隐含层和每个隐含层设置几个结点**的问题,w和v都是通过对数据的学习得出的。

    一般来讲,对于小规模数据集或者简单数据集,节点数量设置为10就己经足够了,但是对于大规模数据集或者复杂数据集来说,有两种方式可供选择:**增加隐藏层中的节点数量;添加更多的隐藏层。**在大型神经网络当中,往往有很多这样的隐藏层,这也是“深度学习”中“深度”二字的来源。

Transformer

在这里插入图片描述

图1:Transformer的结构图,拆解开来,主要分为图上4个部分,其中最重要的就是2和3Encoder-Decoder部分,对咯,Transformer是一个基于Encoder-Decoder框架的模型。

1. inputs 输入

Transformer输入是一个序列数据,以"Tom chase Jerry" 翻译成中文"汤姆追逐杰瑞"为例:

在这里插入图片描述

Encoder 的 inputs就是"Tom chase Jerry" 分词后的词向量。可以是任意形式的词向量,如word2vec,GloVe,one-hot编码。

假设上图中每一个词向量都是一个512维的词向量。

为什么需要添加位置编码呢?
首先,咱们知道,一句话中同一个词,如果词语出现位置不同,意思可能发生翻天覆地的变化,就比如:我欠他100W 和 他欠我100W。这两句话的意思一个地狱一个天堂。可见获取词语出现在句子中的位置信息是一件很重要的事情。但是咱们的Transformer 的是完全基于self-Attention的,而self-attention是不能获取词语位置信息地,就算打乱一句话中词语的位置,每个词还是能与其他词之间计算attention值,就相当于是一个功能强大的词袋模型,对结果没有任何影响。(一会儿在介绍Encoder的时候再详细说明)所以在输入的时候需要给每一个词向量添加位置编码。

在这里插入图片描述

《Attention Is All You Need》论文中Transformer使用的是正余弦位置编码。位置编码通过使用不同频率的正弦、余弦函数生成,然后和对应的位置的词向量相加,位置向量维度必须和词向量的维度一致。过程如上图,PE(positional encoding)计算公式如下:

在这里插入图片描述

解释一下上面的公式:
pos表示单词在句子中的绝对位置,pos=0,1,2…,例如:Jerry在"Tom chase Jerry"中的pos=2;dmodel表示词向量的维度,在这里dmodel=512;2i和2i+1表示奇偶性,i表示词向量中的第几维,例如这里dmodel=512,故i=0,1,2…255。

    至于上面这个公式是怎么得来地,其实不重要,因为很有可能是作者根据经验自己造地,而且公式也不是唯一地,后续goole在bert中的positional encoding也没有再使用这种方法而是通过训练PE,说明这种求位置向量的方法还是存在一定问题地。

    Transformer 的 Decoder的输入与Encoder的输出处理方法步骤是一样地,一个接受source数据,一个接受target数据,对应到上面例子里面就是:Encoder接受英文"Tom chase Jerry",Decoder接受中文"汤姆追逐杰瑞"。只是在有target数据时也就是在进行有监督训练时才会接受Outputs Embedding,进行预测时则不会接收。

2. Transformer的Encoder

    图1第2部分 Encoder block。Encoder block是由6个encoder堆叠而成,Nx=6。图中的灰框部分就是一个encoder的内部结构,从图中我们可以看出一个encoder由Multi-Head Attention 和全连接神经网络Feed Forward Network构成。

2.1 Multi-Head Attention

在这里插入图片描述

    首先,回顾一下**self-attention**,假如输入序列是"Thinking Machines",X1,X2就是对应地"Thinking"和"Machines"添加过位置编码之后的词向量,然后词向量通过三个权值矩阵![W^{Q}](https://latex.codecogs.com/gif.latex?W%5E%7BQ%7D),![W^{K}](https://latex.codecogs.com/gif.latex?W%5E%7BK%7D),![W^{V }](https://latex.codecogs.com/gif.latex?W%5E%7BV%20%7D)转变成为计算Attention值所需的Query,Keys,Values向量。

在这里插入图片描述

    因为咱们再实际使用中,每一个样本,也就是每一条序列数据都是以矩阵的形式输入地,故可以看到上图中,X矩阵是由"Tinking"和"Machines"词向量组成的矩阵,然后跟过变换得到Q,K,V。假设词向量是512维,X矩阵的维度是(2,512),![W^{Q}](https://latex.codecogs.com/gif.latex?W%5E%7BQ%7D),![W^{K}](https://latex.codecogs.com/gif.latex?W%5E%7BK%7D),![W^{V }](https://latex.codecogs.com/gif.latex?W%5E%7BV%20%7D)均是(512,64)维,得到的Query,Keys,Values就都是(2,64)维。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

    从上图中可以看到,在经过Multi-Head Attention得到矩阵Z之后,并没有直接传入全连接神经网络FNN,而是经过了一步:Add&Normalize。 

2.2 Add&Normalize

Add

    Add,就是在Z的基础上加了一个残差块X,加入残差块X的目的是为了防止在深度神经网络训练中发生退化问题,退化的意思就是深度神经网络通过增加网络的层数,Loss逐渐减小,然后趋于稳定达到饱和,然后再继续增加网络层数,Loss反而增大。

Normalize

    在神经网络进行训练之前,都需要对于输入数据进行Normalize归一化,目的有二:1,能够加快训练的速度。2.提高训练的稳定性。 

在这里插入图片描述

    先看图,LN是在同一个样本中不同神经元之间进行归一化,而BN是在同一个batch中不同样本之间的同一位置的神经元之间进行归一化。
     BN是对于相同的维度进行归一化,但是咱们NLP中输入的都是词向量,一个300维的词向量,单独去分析它的每一维是没有意义地,在每一维上进行归一化也是适合地,因此这里选用的是LN。

在这里插入图片描述

2.3 Feed-Forward Networks

    这里的全连接层是一个两层的神经网络,先线性变换,然后ReLU非线性,再线性变换。
     这里的x就是我们Multi-Head Attention的输出Z,还是引用上面的例子,那么Z是(2,64)维的矩阵,假设W1是(64,1024),其中W2与W1维度相反(1024,64),那么按照上面的公式:

FFN(Z)=(2,64)x(64,1024)x(1024,64)=(2,64),我们发现维度没有发生变化,这两层网络就是为了将输入的Z映射到更加高维的空间中(2,64)x(64,1024)=(2,1024),然后通过非线性函数ReLU进行筛选,筛选完后再变回原来的维度。

    然后经过Add&Normalize,输入下一个encoder中,经过6个encoder后输入到decoder中。

3. Transformer的Decoder

    第3部分 Decoder block。Decoder block也是由6个decoder堆叠而成,Nx=6。上图3中的灰框部分就是一个decoder的内部结构,从图中我们可以看出一个decoder由Masked Multi-Head Attention,Multi-Head Attention 和 全连接神经网络FNN构成。比Encoder多了一个Masked Multi-Head Attention,其他的结构与encoder相同,那么咱们就先来看看这个Masked Multi-Head Attention。

** 3.1Transformer Decoder的输入**

Decoder的输入分为两类:
一种是训练时的输入,一种是预测时的输入。
训练时的输入就是已经对准备好对应的target数据。例如翻译任务,Encoder输入"Tom chase Jerry",Decoder输入"汤姆追逐杰瑞"。
预测时的输入,一开始输入的是起始符,然后每次输入是上一时刻Transformer的输出。例如,输入"",输出"汤姆",输入"汤姆",输出"汤姆追逐",输入"汤姆追逐",输出"汤姆追逐杰瑞",输入"汤姆追逐杰瑞",输出"汤姆追逐杰瑞"结束。

** **3.2 Masked Multi-Head Attention

与Encoder的Multi-Head Attention计算原理一样,只是多加了一个mask码。mask 表示掩码,它对某些值进行掩盖,使其在参数更新时不产生效果。Transformer 模型里面涉及两种 mask,分别是 padding mask 和 sequence mask。为什么需要添加这两种mask码呢?

** 1.padding mask**
什么是 padding mask 呢?因为每个批次输入序列长度是不一样的也就是说,我们要对输入序列进行对齐。具体来说,就是给在较短的序列后面填充 0。但是如果输入的序列太长,则是截取左边的内容,把多余的直接舍弃。因为这些填充的位置,其实是没什么意义的,所以我们的attention机制不应该把注意力放在这些位置上,所以我们需要进行一些处理。
具体的做法是,把这些位置的值加上一个非常大的负数(负无穷),这样的话,经过 softmax,这些位置的概率就会接近0!

    **2.sequence mask**
     sequence mask 是为了使得 decoder 不能看见未来的信息。对于一个序列,在 time_step 为 t 的时刻,我们的解码输出应该只能依赖于 t 时刻之前的输出,而不能依赖 t 之后的输出。因此我们需要想一个办法,把 t 之后的信息给隐藏起来。这在训练的时候有效,因为训练的时候每次我们是将target数据完整输入进decoder中地,预测时不需要,预测的时候我们只能得到前一时刻预测出的输出。

那么具体怎么做呢?也很简单:产生一个上三角矩阵,上三角的值全为0。把这个矩阵作用在每一个序列上,就可以达到我们的目的。

    上面可能忘记说了,在Encoder中的Multi-Head Attention也是需要进行mask地,只不过Encoder中只需要padding mask即可,而Decoder中需要padding mask和sequence mask。OK除了这点mask不一样以外,其他的部分均与Encoder一样啦~

    Add&Normalize也与Encoder中一样,接下来就到了Decoder中第二个Multi-Head Attention,这个Multi-Head Attention又与Encoder中有一点点不一样。

3.3 基于Encoder-Decoder 的Multi-Head Attention

Encoder中的Multi-Head Attention是基于Self-Attention地,Decoder中的第二个Multi-Head Attention就只是基于Attention,它的输入Quer来自于Masked Multi-Head Attention的输出,Keys和Values来自于Encoder中最后一层的输出。

为啥Decoder中要搞两个Multi-Head Attention呢?
我个人理解是第一个Masked Multi-Head Attention是为了得到之前已经预测输出的信息,相当于记录当前时刻的输入之间的信息的意思。第二个Multi-Head Attention是为了通过当前输入的信息得到下一时刻的信息,也就是输出的信息,是为了表示当前的输入与经过encoder提取过的特征向量之间的关系来预测输出。

经过了第二个Multi-Head Attention之后的Feed Forward Network与Encoder中一样,然后就是输出进入下一个decoder,如此经过6层decoder之后到达最后的输出层。

4. Transformer的输出

    首先,经过一次线性变换,然后Softmax得到输出的概率分布,然后通过词典,输出概率最大的对应的单词作为我们的预测输出。

5. 总结优缺点

优点:
1.效果好
2.可以并行训练,速度快
3.很好地解决了长距离依赖的问题
缺点:
1.完全基于self-attention,对于词语位置之间的信息有一定的丢失,虽然加入了positional encoding来解决这个问题,但也还存在着可以优化的地方。


参考文章:

多层感知机(MLP)简介_北漂奋斗者的博客-CSDN博客_mlp

(六十七)神经网络——MLP_小粉桥反手王的博客-CSDN博客_mlp神经网络

史上最小白之Transformer详解_Stink1995的博客-CSDN博客_transformer神经网络


本文转载自: https://blog.csdn.net/LiRongLu_/article/details/126384067
版权归原作者 六个核桃Lu 所有, 如有侵权,请联系我们删除。

“学习笔记 | 多层感知机(MLP)、Transformer”的评论:

还没有评论