0


16,8和4位浮点数是如何工作的

50年前Kernighan、Ritchie和他们的C语言书的第一版开始,人们就知道单精度“float”类型有32位大小,双精度类型有64位大小。还有一种具有扩展精度的80位“长双精度”类型,这些类型几乎涵盖了浮点数据处理的所有需求。但是在最近几年,尤其是今年LLM的兴起,为了减小模型的存储和内存占用,开发人员开始尽可能地缩小浮点类型。

在本文中,我们将介绍最流行的浮点格式,创建一个简单的神经网络,并了解它是如何工作的。

“标准”32位浮点数

我们先回顾一下标准格式。IEEE 754浮点运算标准由IEEE于1985年制定。32浮点型的典型数字是这样的:

第一个比特(bit)是一个符号,接下来的8个比特代表一个指数,最后一个比特代表尾数。最终值的计算公式为:

我们创建一个辅助函数以二进制形式打印浮点值:

 import struct
 
 
 def print_float32(val: float):
     """ Print Float32 in a binary form """
     m = struct.unpack('I', struct.pack('f', val))[0]
     return format(m, 'b').zfill(32)
 
 
 print_float32(0.15625)
 
 # > 00111110001000000000000000000000 

再创建一个逆向转换函数,这将在后面有用:

 def ieee_754_conversion(sign, exponent_raw, mantissa, exp_len=8, mant_len=23):
     """ Convert binary data into the floating point value """
     sign_mult = -1 if sign == 1 else 1
     exponent = exponent_raw - (2 ** (exp_len - 1) - 1)
     mant_mult = 1
     for b in range(mant_len - 1, -1, -1):
         if mantissa & (2 ** b):
             mant_mult += 1 / (2 ** (mant_len - b))
 
     return sign_mult * (2 ** exponent) * mant_mult
 
 
 ieee_754_conversion(0b0, 0b01111100, 0b01000000000000000000000)
 
 #> 0.15625

作为开发,你肯定知道浮点类型的准确性是有限的,比如这个:

 val = 3.14
 print(f"{val:.20f}")
 
 # > 3.14000000000000012434

在一般情况下,这不是一个大问题,但是我们拥有的比特位越少,得到的精度就越低。

16位浮点数

早期对这种格式的需求并不大,直到2008年才将16位浮点类型添加到IEEE 754标准中。它有一个符号位,5个指数位和10位尾数(分数):

他的转换逻辑与32位浮点数相同,但精度较低。以二进制形式打印一个16位浮点数:

 import numpy as np
 
 
 def print_float16(val: float):
     """ Print Float16 in a binary form """
     m = struct.unpack('H', struct.pack('e', np.float16(val)))[0]
     return format(m, 'b').zfill(16)
 
 print_float16(3.14)
 
 # > 0100001001001000

使用之前使用的方法,我们可以进行反向转换:

 ieee_754_conversion(0, 0b10000, 0b1001001000, exp_len=5, mant_len=10)
 
 # > 3.140625

我们还可以找到Float16中可以表示的最大值:

 ieee_754_conversion(0, 0b11110, 0b1111111111, exp_len=5, mant_len=10)
 
 #> 65504.0

这里使用0b11110,是因为在IEEE 754标准中,0b11111是为“无穷大”保留的。同理还可以找到可能的最小值:

 ieee_754_conversion(0, 0b00001, 0b0000000000, exp_len=5, mant_len=10)
 
 #> 0.00006104

对于大多数开发人员来说,像这样的类型是一种“未知的领域”,因为c++中也没有标准的16位浮点类型。

16位" bfloat " (BFP16)

这种浮点格式是由谷歌团队开发的,它是专门为机器学习设计的(名字中的“B”也代表“大脑”)。该类型是对“标准”16位浮点数的修改:指数被扩大到8位,因此“bfloat16”的动态范围实际上与float-32相同。但尾数的大小被减少到7位:

让我们做一个和之前类似的计算:

 ieee_754_conversion(0, 0b10000000, 0b1001001, exp_len=8, mant_len=7)
 
 #> 3.140625

可以看到由于指数较大,bfloat16格式具有更宽的范围:

 ieee_754_conversion(0, 0b11111110, 0b1111111, exp_len=8, mant_len=7)
 
 #> 3.3895313892515355e+38

这比前面示例中的65504.0要好得多,但是正如前面提到的:因为尾数中的位数更少,所以bfloat16的精度更低,可以在Tensorflow中测试这两种类型:

 import tensorflow as tf
 
 
 print(f"{tf.constant(1.2, dtype=tf.float16).numpy().item():.12f}")
 
 # > 1.200195312500
 
 print(f"{tf.constant(1.2, dtype=tf.bfloat16).numpy().item():.12f}")
 
 # > 1.203125000000

8位浮点(FP8)

这种(相对较新的)格式是在2022年提出的,它也是为机器学习而创建的——因为模型变得更大,将它们放入GPU内存是一个挑战。FP8格式有两种变体:E4M3(4位指数和3位尾数)和E5M2(5位指数和2位尾数)。

让我们来获取两种格式的最大可能值:

 ieee_754_conversion(0, 0b1111, 0b110, exp_len=4, mant_len=3)
 
 # > 448.0
 
 ieee_754_conversion(0, 0b11110, 0b11, exp_len=5, mant_len=2)
 
 # > 57344.0

也可以在Tensorflow中使用FP8:

 import tensorflow as tf
 from tensorflow.python.framework import dtypes
 
 
 a_fp8 = tf.constant(3.14, dtype=dtypes.float8_e4m3fn)
 print(a_fp8)
 
 # > 3.25
 
 a_fp8 = tf.constant(3.14, dtype=dtypes.float8_e5m2)
 print(a_fp8)
 
 # > 3.0

让我们在这两种类型中画一个正弦波:

 import numpy as np
 import tensorflow as tf
 from tensorflow.python.framework import dtypes
 import matplotlib.pyplot as plt
 
 
 length = np.pi * 4
 resolution = 200
 xvals = np.arange(0, length, length / resolution)
 wave = np.sin(xvals)
 wave_fp8_1 = tf.cast(wave, dtypes.float8_e4m3fn)
 wave_fp8_2 = tf.cast(wave, dtypes.float8_e5m2)
 
 plt.rcParams["figure.figsize"] = (14, 5)
 plt.plot(xvals, wave_fp8_1.numpy())
 plt.plot(xvals, wave_fp8_2.numpy())
 plt.show()

可以看到,有一些差别,但是都还不错。

可以明显看到一些精度的损失,但这个图像看起来仍然像正弦波!

4位浮点类型

现在让我们来看看最“疯狂”的东西——4位浮点值!4位浮点数(FP4)是遵循IEEE标准的最小可能值,具有1位符号,2位指数和1位尾数:

第二种可能的4位实现是所谓的NormalFloat (NF4)数据类型。NF4值针对保存正态分布变量进行了优化。其他数据类型很难做到这一点,但所有可能的NF4值都可以很容易地打印在一个列表中:

 [-1.0, -0.6961928009986877, -0.5250730514526367, -0.39491748809814453, 
  -0.28444138169288635, -0.18477343022823334, -0.09105003625154495, 0.0,
   0.07958029955625534, 0.16093020141124725, 0.24611230194568634, 0.33791524171829224, 
   0.44070982933044434, 0.5626170039176941, 0.7229568362236023, 1.0]

FP4和NF4类型都在bitsandbytes库中有相应的实现。作为一个例子,让我们将[1.0,2.0,3.0,4.0]数组转换为FP4:

 from bitsandbytes import functional as bf
 
 
 def print_uint(val: int, n_digits=8) -> str:
     """ Convert 42 => '00101010' """
     return format(val, 'b').zfill(n_digits)
 
 
 device = torch.device("cuda")
 x = torch.tensor([1.0, 2.0, 3.0, 4.0], device=device)
 x_4bit, qstate = bf.quantize_fp4(x, blocksize=64)
 
 print(x_4bit)
 # > tensor([[117], [35]], dtype=torch.uint8)
 
 print_uint(x_4bit[0].item())
 # > 01110101
 print_uint(x_4bit[1].item())
 # > 00100011
 
 print(qstate)
 # > (tensor([4.]), 
 # >  'fp4', 
 # >  tensor([ 0.0000,  0.0052,  0.6667,  1.0000,  0.3333,  0.5000,  0.1667,  0.2500,
 # >           0.0000, -0.0052, -0.6667, -1.0000, -0.3333, -0.5000, -0.1667, -0.2500])])

作为输出,我们得到两个对象:一个16位数组[117,35],实际上包含我们的4个数字,和一个“状态”对象,包含缩放因子4.0和所有16个FP4数字的张量。

例如,第一个4位数字为“0111”(=7),在状态对象中我们可以看到对应的浮点值为0.25;0.25 4 = 1.0。第二个数字是“0101”(=5),结果是0.54 = 2.0。对于第三个数字,“0010”是2,0.666*4 = 2.666,接近但不等于3.0。对于4位值显然有了一些精度损失。对于最后一个值,“0011”是3,1000 *4 = 4.0。

逆向转换不需要手动操作bitsandbytes可以帮我们自动完成

 x = bf.dequantize_fp4(x_4bit, qstate)
 print(x)
 
 # > tensor([1.000, 2.000, 2.666, 4.000])

4位格式也有一个有限的动态范围。例如,数组[1.0,2.0,3.0,64.0]将被转换为[0.333,0.333,0.333,64.0]。但对于规范化的数据,还是可以接受的。作为一个例子,让我们画一个FP4格式的正弦波:

 import matplotlib.pyplot as plt
 import numpy as np
 from bitsandbytes import functional as bf
 
 
 length = np.pi * 4
 resolution = 256
 xvals = np.arange(0, length, length / resolution)
 wave = np.sin(xvals)
 
 x_4bit, qstate = bf.quantize_fp4(torch.tensor(wave, dtype=torch.float32, device=device), blocksize=64)
 dq = bf.dequantize_fp4(x_4bit, qstate)
 
 plt.rcParams["figure.figsize"] = (14, 5)
 plt.title('FP8 Sine Wave')
 plt.plot(xvals, wave)
 plt.plot(xvals, dq.cpu().numpy())
 plt.show()

可以看到精度的损失:

特别说明,在写这篇文章的时候,4位类型NF4只适用于CUDA;目前还不支持CPU计算。

测试

作为本文的最后一步,我们创建一个神经网络模型并对其进行测试。使用transformers库,通过将load_in_4-bit参数设置为True,就可以以4位加载预训练模型。但这并不能让我们理解它是如何工作的。所以我们将创建一个小型神经网络,训练它并以4位精度使用它。

首先,让我们创建一个神经网络模型:

 import torch
 import torch.nn as nn
 import torch.optim as optim
 from typing import Any
 
 
 class NetNormal(nn.Module):
     def __init__(self):
         super().__init__()
         self.flatten = nn.Flatten()
         self.model = nn.Sequential(
             nn.Linear(784, 128),
             nn.ReLU(),
             nn.Linear(128, 64),
             nn.ReLU(),
             nn.Linear(64, 10)
         )
       
     def forward(self, x):
         x = self.flatten(x)
         x = self.model(x)
         return F.log_softmax(x, dim=1)

我们使用MNIST数据集,数据集分为6万张训练图像和1万张测试图像;可以使用参数train=True|False在DataLoader中指定选择。

 from torchvision import datasets, transforms
 
 
 train_loader = torch.utils.data.DataLoader(
     datasets.MNIST("data", train=True, download=True,
                    transform=transforms.Compose([
                        transforms.ToTensor(),
                        transforms.Normalize((0.1307,), (0.3081,))
                    ])),
     batch_size=batch_size, shuffle=True)
 
 test_loader = torch.utils.data.DataLoader(
     datasets.MNIST("data", train=False, transform=transforms.Compose([
                        transforms.ToTensor(),
                        transforms.Normalize((0.1307,), (0.3081,))
                    ])),
     batch_size=batch_size, shuffle=True)

训练过程以“正常”方式进行,使用默认精度:

 device = torch.device("cuda")
 
 batch_size = 64
 epochs = 4
 log_interval = 500
 
 def train(model: nn.Module, train_loader: torch.utils.data.DataLoader,
           optimizer: Any, epoch: int):
     """ Train the model """
     model.train()
     for batch_idx, (data, target) in enumerate(train_loader):
         data, target = data.to(device), target.to(device)
         optimizer.zero_grad()
         output = model(data)
         loss = F.nll_loss(output, target)
         loss.backward()
         optimizer.step()
         
         if batch_idx % log_interval == 0:
             print(f'Train Epoch: {epoch} [{batch_idx * len(data)}/{len(train_loader.dataset)}]\tLoss: {loss.item():.5f}')
             
             
 def test(model: nn.Module, test_loader: torch.utils.data.DataLoader):
     """ Test the model """
     model.eval()
     test_loss = 0
     correct = 0
     with torch.no_grad():
         for data, target in test_loader:
             data, target = data.to(device), target.to(device)
             t_start = time.monotonic()
             output = model(data)
             test_loss += F.nll_loss(output, target, reduction='sum').item()
             pred = output.argmax(dim=1, keepdim=True)
             correct += pred.eq(target.view_as(pred)).sum().item()
 
     test_loss /= len(test_loader.dataset)
     t_diff = time.monotonic() - t_start
 
     print(f"Test set: Average loss: {test_loss:.4f}, Accuracy: {correct}/{len(test_loader.dataset)} ({100. * correct / len(test_loader.dataset)}%)\n")
 
 
 def get_size_kb(model: nn.Module):
     """ Get model size in kilobytes """
     size_model = 0
     for param in model.parameters():
         if param.data.is_floating_point():
             size_model += param.numel() * torch.finfo(param.data.dtype).bits
         else:
             size_model += param.numel() * torch.iinfo(param.data.dtype).bits
     print(f"Model size: {size_model / (8*1024)} KB")
 
 
 # Train
 model = NetNormal().to(device)
 optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
 for epoch in range(1, epochs + 1):
     train(model, train_loader, optimizer, epoch)
     test(model, test_loader)
 
 get_size(model)
 
 # Save
 torch.save(model.state_dict(), "mnist_model.pt")

这里还有一个“get_size_kb”方法来获取以kb为单位的模型大小。

训练过程是这样的:

 Train Epoch: 1 [0/60000] Loss: 2.31558
 Train Epoch: 1 [32000/60000] Loss: 0.53704
 Test set: Average loss: 0.2684, Accuracy: 9225/10000 (92.25%)
 
 Train Epoch: 2 [0/60000] Loss: 0.19791
 Train Epoch: 2 [32000/60000] Loss: 0.17268
 Test set: Average loss: 0.1998, Accuracy: 9401/10000 (94.01%)
 
 Train Epoch: 3 [0/60000] Loss: 0.30570
 Train Epoch: 3 [32000/60000] Loss: 0.33042
 Test set: Average loss: 0.1614, Accuracy: 9530/10000 (95.3%)
 
 Train Epoch: 4 [0/60000] Loss: 0.20046
 Train Epoch: 4 [32000/60000] Loss: 0.19178
 Test set: Average loss: 0.1376, Accuracy: 9601/10000 (96.01%)
 
 Model size: 427.2890625 KB

我们的简单模型准确率达到96%,神经网络大小为427 KB。

下面我们将“Linear”层替换为“Linear8bitLt”。

 from bitsandbytes.nn import Linear8bitLt
 
 
 class Net8Bit(nn.Module):
     def __init__(self):
         super().__init__()
         self.flatten = nn.Flatten()
         self.model = nn.Sequential(
             Linear8bitLt(784, 128, has_fp16_weights=False),
             nn.ReLU(),
             Linear8bitLt(128, 64, has_fp16_weights=False),
             nn.ReLU(),
             Linear8bitLt(64, 10, has_fp16_weights=False)
         )
       
     def forward(self, x):
         x = self.flatten(x)
         x = self.model(x)
         return F.log_softmax(x, dim=1)
 
 
 device = torch.device("cuda")
 
 # Load
 model = Net8Bit()
 model.load_state_dict(torch.load("mnist_model.pt"))
 get_size_kb(model)
 print(model.model[0].weight)
 
 # Convert
 model = model.to(device)
 
 get_size_kb(model)
 print(model.model[0].weight)
 
 # Run
 test(model, test_loader)

结果如下:

 Model size: 427.2890625 KB
 Parameter(Int8Params([[ 0.0071,  0.0059,  0.0146,  ...,  0.0111, -0.0041,  0.0025],
             ...,
             [-0.0131, -0.0093, -0.0016,  ..., -0.0156,  0.0042,  0.0296]]))
 
 Model size: 107.4140625 KB
 Parameter(Int8Params([[  9,   7,  19,  ...,  14,  -5,   3],
             ...,
             [-21, -15,  -3,  ..., -25,   7,  47]], device='cuda:0',
            dtype=torch.int8))
 
 Test set: Average loss: 0.1347, Accuracy: 9600/10000 (96.0%)

原始模型以标准浮点格式加载;它的大小是一样的,权重看起来像[0.0071,0.0059,…]。模型尺寸缩小了4倍。正如我们所看到的,权重值在相同的范围内,因此转换很容易-在测试运行期间,根本没有准确性损失!

再继续4bit的版本:

 from bitsandbytes.nn import LinearFP4, LinearNF4
 
 
 class Net4Bit(nn.Module):
     def __init__(self):
         super().__init__()
         self.flatten = nn.Flatten()
         self.model = nn.Sequential(
             LinearFP4(784, 128),
             nn.ReLU(),
             LinearFP4(128, 64),
             nn.ReLU(),
             LinearFP4(64, 10)
         )
       
     def forward(self, x):
         x = self.flatten(x)
         x = self.model(x)
         return F.log_softmax(x, dim=1)
 
 
 # Load
 model = Net4Bit()
 model.load_state_dict(torch.load("mnist_model.pt"))
 get_model_size(model)
 print(model.model[2].weight)
 
 # Convert
 model = model.to(device)
 
 get_model_size(model)
 print(model.model[2].weight)
 
 # Run
 test(model, test_loader)

输出如下所示:

 Model size: 427.2890625 KB
 Parameter(Params4bit([[ 0.0916, -0.0453,  0.0891,  ...,  0.0430, -0.1094, -0.0751],
             ...,
             [-0.0079, -0.1021, -0.0094,  ..., -0.0124,  0.0889,  0.0048]]))
 
 Model size: 54.1015625 KB
 Parameter(Params4bit([[ 95], [ 81], [109],
             ...,
             [ 34], [ 46], [ 33]], device='cuda:0', dtype=torch.uint8))
 
 Test set: Average loss: 0.1414, Accuracy: 9579/10000 (95.79%)

模型大小减少了8倍,从427 KB减少到54 KB,但准确率下降1%。这怎么可能?至少对这个模型来说,答案很简单:

  • 权重或多或少是均匀分布的,并且精度损失不是太大。
  • 神经网络使用Softmax作为输出,最大值的索引决定了实际结果。所以对于寻找最大索引,值本身并不重要。例如,当其他值为0.1或0.2时,该值为0.8或0.9没有任何区别!

我们从测试数据集加载数字并检查模型输出。

 dataset = datasets.MNIST('data', train=False, transform=transforms.Compose([
                        transforms.ToTensor(),
                        transforms.Normalize((0.1307,), (0.3081,))
                    ]))
 
 np.set_printoptions(precision=3, suppress=True)  # No scientific notation
 
 data_in = dataset[4][0]
 for x in range(28):
     for y in range(28):
         print(f"{data_in[0][x][y]: .1f}", end=" ")
     print()

打印输出显示了我们想要预测的数字:

让我们看看“标准”模型将返回什么:

 # Suppress scientific notation
 np.set_printoptions(precision=2, suppress=True)  
 
 # Predict
 with torch.no_grad():
     output = model(data_in.to(device))
     print(output[0].cpu().numpy())
     ind = output.argmax(dim=1, keepdim=True)[0].cpu().item()
     print("Result:", ind)
 
 # > [ -8.27 -13.89  -6.89 -11.13  -0.03  -8.09  -7.46  -7.6   -6.43  -3.77]
 # > Result: 4

最大元素位于第5个位置(numpy数组中的元素从0开始编号),对应于数字“4”。

这是 8-bit:模型的输出:

 # > [ -9.09 -12.66  -8.42 -12.2   -0.01  -9.25  -8.29  -7.26  -8.36  -4.45]
 # > Result: 4

4-bit的如下:

 # > [ -8.56 -12.12  -7.52 -12.1   -0.01  -8.94  -7.84  -7.41  -7.31  -4.45]
 # > Result: 4

可以看到实际输出值略有不同,但最大索引是保持不变的。

总结

在本文中,我们测试了16位、8位和4位浮点数的不同方案,创建了一个神经网络,并能够以8位和4位精度运行它。通过将精度从标准浮点数降低到4位浮点数,内存占用减少了8倍,但精度损失最小。

就像我们昨天的文章中提到的,即使是4位也已经不是极限了;在GPTQ论文中,提到了将权重量化为2甚至3元(1.5比特!)。还有可以对不同层应用不同量化的ExLlamaV2。

作者:Dmitrii Eliuseev

“16,8和4位浮点数是如何工作的”的评论:

还没有评论