0


深度学习网络模型————Swin-Transformer详细讲解与代码实现

深度学习网络模型——Swin-Transformer详细讲解与代码实现

论文名称:Swin Transformer: Hierarchical Vision Transformer using Shifted Windows

原论文地址https://arxiv.org/abs/2103.14030

官方开源代码地址https://github.com/microsoft/Swin-Transformer

在这里插入图片描述

一、网路模型整体架构

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

二、Patch Partition模块详解

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

三、Patch Merging模块

在这里插入图片描述
在这里插入图片描述

四、W-MSA详解

在这里插入图片描述

在这里插入图片描述

五、SW-MSA详解

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

masked MSA详解

在这里插入图片描述

六、 Relative Position Bias详解

在这里插入图片描述
在这里插入图片描述

七、模型详细配置参数

在这里插入图片描述

八、重要模块代码实现:

1、Patch Partition代码模块:

class PatchEmbed(nn.Module):"""
    2D Image to Patch Embedding
    split image into non-overlapping patches   即将图片划分成一个个没有重叠的patch
    """
    def __init__(self, patch_size=4, in_c=3, embed_dim=96, norm_layer=None):super().__init__()
        patch_size =(patch_size, patch_size)
        self.patch_size = patch_size
        self.in_chans = in_c
        self.embed_dim = embed_dim
        self.proj = nn.Conv2d(in_c, embed_dim, kernel_size=patch_size, stride=patch_size)
        self.norm =norm_layer(embed_dim)if norm_layer else nn.Identity()

    def forward(self, x):
        _, _, H, W = x.shape

        #padding
        # 如果输入图片的H,W不是patch_size的整数倍,需要进行padding
        pad_input =(H % self.patch_size[0]!=0)or(W % self.patch_size[1]!=0)if pad_input:#topad the last 3 dimensions,
            # (W_left, W_right, H_top,H_bottom, C_front, C_back)
            x = F.pad(x,(0, self.patch_size[1]- W % self.patch_size[1],   # 表示宽度方向右侧填充数
                          0, self.patch_size[0]- H % self.patch_size[0],   # 表示高度方向底部填充数
                          0,0))

        # 下采样patch_size倍
        x = self.proj(x)
        _, _, H, W = x.shape
        #flatten:[B, C, H, W]->[B, C, HW]#transpose:[B, C, HW]->[B, HW, C]
        x = x.flatten(2).transpose(1,2)
        x = self.norm(x)return x, H, W

2、Patch Merging代码模块:

class PatchMerging(nn.Module):
    r""" Patch Merging Layer.
        步长为2,间隔采样
    Args:dim(int): Number of input channels.norm_layer(nn.Module, optional): Normalization layer.  Default: nn.LayerNorm
    """

    def __init__(self, dim, norm_layer=nn.LayerNorm):super().__init__()
        self.dim = dim
        self.reduction = nn.Linear(4* dim,2* dim, bias=False)
        self.norm =norm_layer(4* dim)

    def forward(self, x, H, W):"""
        x: B, H*W, C    即输入x的通道排列顺序
        """
        B, L, C = x.shape
        assert L == H * W,"input feature has wrong size"

        x = x.view(B, H, W, C)#padding
        # 如果输入feature map的H,W不是2的整数倍,需要进行padding
        pad_input =(H %2==1)or(W %2==1)if pad_input:#topad the last 3 dimensions, starting from the last dimension and moving forward.
            # (C_front, C_back, W_left, W_right, H_top, H_bottom)
            # 注意这里的Tensor通道是[B, H, W, C],所以会和官方文档有些不同
            x = F.pad(x,(0,0,0, W %2,0, H %2))

        # 以2为间隔进行采样
        x0 = x[:,0::2,0::2,:]  # [B, H/2, W/2, C]
        x1 = x[:,1::2,0::2,:]  # [B, H/2, W/2, C]
        x2 = x[:,0::2,1::2,:]  # [B, H/2, W/2, C]
        x3 = x[:,1::2,1::2,:]  # [B, H/2, W/2, C]
        x = torch.cat([x0, x1, x2, x3],-1)  #  ————————>[B, H/2, W/2,4*C]   在channael维度上进行拼接
        x = x.view(B,-1,4* C)  # [B, H/2*W/2,4*C]

        x = self.norm(x)
        x = self.reduction(x)  # [B, H/2*W/2,2*C]return x

3、mask掩码生成代码模块:

    def create_mask(self, x, H, W):#calculateattention mask for SW-MSA
        # 保证Hp和Wp是window_size的整数倍
        Hp =int(np.ceil(H / self.window_size))* self.window_size
        Wp =int(np.ceil(W / self.window_size))* self.window_size
        # 拥有和feature map一样的通道排列顺序,方便后续window_partition
        img_mask = torch.zeros((1, Hp, Wp,1), device=x.device)  # [1, Hp, Wp,1]
        h_slices =(slice(0,-self.window_size),slice(-self.window_size,-self.shift_size),slice(-self.shift_size, None))
        w_slices =(slice(0,-self.window_size),slice(-self.window_size,-self.shift_size),slice(-self.shift_size, None))
        cnt =0for h in h_slices:for w in w_slices:
                img_mask[:, h, w,:]= cnt
                cnt +=1

        # 将img_mask划分成一个一个窗口
        mask_windows =window_partition(img_mask, self.window_size)  # [nW, Mh, Mw,1]           # 输出的是按照指定的window_size划分成一个一个窗口的数据
        mask_windows = mask_windows.view(-1, self.window_size * self.window_size)  # [nW, Mh*Mw]
        attn_mask = mask_windows.unsqueeze(1)- mask_windows.unsqueeze(2)  # [nW,1, Mh*Mw]-[nW, Mh*Mw,1]  使用了广播机制
        # [nW, Mh*Mw, Mh*Mw]
        # 因为需要求得的是自身注意力机制,所以,所以相同的区域使用0表示,;不同的区域不等于0,填入-100,这样,在求得
        attn_mask = attn_mask.masked_fill(attn_mask !=0,float(-100.0)).masked_fill(attn_mask ==0,float(0.0))   # 即对于不等于0的位置,赋值为-100;否则为0return attn_mask

4、stage堆叠部分代码:

class BasicLayer(nn.Module):"""
    A basic Swin Transformer layer for one stage.

    Args:dim(int): Number of input channels.depth(int): Number of blocks.num_heads(int): Number of attention heads.window_size(int): Local window size.mlp_ratio(float): Ratio of mlp hidden dim to embedding dim.qkv_bias(bool, optional): If True, add a learnable bias to query, key, value. Default: True
        drop(float, optional): Dropout rate. Default:0.0attn_drop(float, optional): Attention dropout rate. Default:0.0drop_path(float| tuple[float], optional): Stochastic depth rate. Default:0.0norm_layer(nn.Module, optional): Normalization layer. Default: nn.LayerNorm
        downsample(nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
        use_checkpoint(bool): Whether to use checkpointing to save memory. Default: False."""

    def __init__(self, dim, depth, num_heads, window_size,
                 mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0.,
                 drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False):super().__init__()
        self.dim = dim
        self.depth = depth
        self.window_size = window_size
        self.use_checkpoint = use_checkpoint
        self.shift_size = window_size // 2  # 表示向右和向下偏移的窗口大小   即窗口大小除以2,然后向下取整#buildblocks
        self.blocks = nn.ModuleList([SwinTransformerBlock(
                dim=dim,
                num_heads=num_heads,
                window_size=window_size,
                shift_size=0if(i %2==0)else self.shift_size,   # 通过判断shift_size是否等于0,来决定是使用W-MSA与SW-MSA
                mlp_ratio=mlp_ratio,
                qkv_bias=qkv_bias,
                drop=drop,
                attn_drop=attn_drop,
                drop_path=drop_path[i]ifisinstance(drop_path, list)else drop_path,
                norm_layer=norm_layer)for i in range(depth)])#patchmerging layer    即:PatchMerging类if downsample is not None:
            self.downsample =downsample(dim=dim, norm_layer=norm_layer)else:
            self.downsample = None

    def create_mask(self, x, H, W):#calculateattention mask for SW-MSA
        # 保证Hp和Wp是window_size的整数倍
        Hp =int(np.ceil(H / self.window_size))* self.window_size
        Wp =int(np.ceil(W / self.window_size))* self.window_size
        # 拥有和feature map一样的通道排列顺序,方便后续window_partition
        img_mask = torch.zeros((1, Hp, Wp,1), device=x.device)  # [1, Hp, Wp,1]
        h_slices =(slice(0,-self.window_size),slice(-self.window_size,-self.shift_size),slice(-self.shift_size, None))
        w_slices =(slice(0,-self.window_size),slice(-self.window_size,-self.shift_size),slice(-self.shift_size, None))
        cnt =0for h in h_slices:for w in w_slices:
                img_mask[:, h, w,:]= cnt
                cnt +=1

        # 将img_mask划分成一个一个窗口
        mask_windows =window_partition(img_mask, self.window_size)  # [nW, Mh, Mw,1]           # 输出的是按照指定的window_size划分成一个一个窗口的数据
        mask_windows = mask_windows.view(-1, self.window_size * self.window_size)  # [nW, Mh*Mw]
        attn_mask = mask_windows.unsqueeze(1)- mask_windows.unsqueeze(2)  # [nW,1, Mh*Mw]-[nW, Mh*Mw,1]  使用了广播机制
        # [nW, Mh*Mw, Mh*Mw]
        # 因为需要求得的是自身注意力机制,所以,所以相同的区域使用0表示,;不同的区域不等于0,填入-100,这样,在求得
        attn_mask = attn_mask.masked_fill(attn_mask !=0,float(-100.0)).masked_fill(attn_mask ==0,float(0.0))   # 即对于不等于0的位置,赋值为-100;否则为0return attn_mask

    def forward(self, x, H, W):
        attn_mask = self.create_mask(x, H, W)  # [nW, Mh*Mw, Mh*Mw]   # 制作mask蒙版
        for blk in self.blocks:
            blk.H, blk.W = H, W
            if not torch.jit.is_scripting() and self.use_checkpoint:
                x = checkpoint.checkpoint(blk, x, attn_mask)else:
                x =blk(x, attn_mask)if self.downsample is not None:
            x = self.downsample(x, H, W)
            H, W =(H +1)// 2, (W + 1) // 2return x, H, W

5、SW-MSA或者W-MSA模块代码:

class SwinTransformerBlock(nn.Module):
    r""" Swin Transformer Block.

    Args:dim(int): Number of input channels.num_heads(int): Number of attention heads.window_size(int): Window size.shift_size(int): Shift size for SW-MSA.mlp_ratio(float): Ratio of mlp hidden dim to embedding dim.qkv_bias(bool, optional): If True, add a learnable bias to query, key, value. Default: True
        drop(float, optional): Dropout rate. Default:0.0attn_drop(float, optional): Attention dropout rate. Default:0.0drop_path(float, optional): Stochastic depth rate. Default:0.0act_layer(nn.Module, optional): Activation layer. Default: nn.GELU
        norm_layer(nn.Module, optional): Normalization layer.  Default: nn.LayerNorm
    """

    def __init__(self, dim, num_heads, window_size=7, shift_size=0,
                 mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., drop_path=0.,
                 act_layer=nn.GELU, norm_layer=nn.LayerNorm):super().__init__()
        self.dim = dim
        self.num_heads = num_heads
        self.window_size = window_size
        self.shift_size = shift_size
        self.mlp_ratio = mlp_ratio
        assert 0<= self.shift_size < self.window_size,"shift_size must in 0-window_size"

        self.norm1 =norm_layer(dim)    # 先经过层归一化处理

        #WindowAttention即为:SW-MSA或者W-MSA模块
        self.attn =WindowAttention(
            dim, window_size=(self.window_size, self.window_size), num_heads=num_heads, qkv_bias=qkv_bias,
            attn_drop=attn_drop, proj_drop=drop)

        self.drop_path =DropPath(drop_path)if drop_path >0.else nn.Identity()
        self.norm2 =norm_layer(dim)
        mlp_hidden_dim =int(dim * mlp_ratio)
        self.mlp =Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)

    def forward(self, x, attn_mask):
        H, W = self.H, self.W
        B, L, C = x.shape
        assert L == H * W,"input feature has wrong size"

        shortcut = x
        x = self.norm1(x)
        x = x.view(B, H, W, C)#padfeature maps to multiples of window size
        # 把feature map给pad到window size的整数倍
        pad_l =pad_t=0
        pad_r =(self.window_size - W % self.window_size)% self.window_size
        pad_b =(self.window_size - H % self.window_size)% self.window_size
        x = F.pad(x,(0,0, pad_l, pad_r,pad_t, pad_b))
        _, Hp, Wp, _ = x.shape

        #cyclicshift
        # 判断是进行SW-MSA或者是W-MSA模块
        if self.shift_size >0:#https://blog.csdn.net/ooooocj/article/details/126046858?ops_request_misc=&request_id=&biz_id=102&utm_term=torch.roll()%E7%94%A8%E6%B3%95&utm_medium=distribute.pc_search_result.none-task-blog-2~all~sobaiduweb~default-0-126046858.142^v73^control,201^v4^add_ask,239^v1^control&spm=1018.2226.3001.4187
            shifted_x = torch.roll(x, shifts=(-self.shift_size,-self.shift_size), dims=(1,2))    #进行数据移动操作
        else:
            shifted_x = x
            attn_mask = None

        #partitionwindows
        # 将窗口按照window_size的大小进行划分,得到一个个窗口
        x_windows =window_partition(shifted_x, self.window_size)  # [nW*B, Mh, Mw, C]
        # 将数据进行展平操作
        x_windows = x_windows.view(-1, self.window_size * self.window_size, C)  # [nW*B, Mh*Mw, C]#W-MSA/SW-MSA"""
            # 进行多头自注意力机制操作
        """
        attn_windows = self.attn(x_windows, mask=attn_mask)  # [nW*B, Mh*Mw, C]#mergewindows
        attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)  # [nW*B, Mh, Mw, C]
        # 将多窗口拼接回大的featureMap
        shifted_x =window_reverse(attn_windows, self.window_size, Hp, Wp)  # [B, H', W', C]#reversecyclic shift
        # 将移位的数据进行还原
        if self.shift_size >0:
            x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1,2))else:
            x = shifted_x
        # 如果进行了padding操作,需要移出掉相应的pad
        if pad_r >0 or pad_b >0:
            # 把前面pad的数据移除掉
            x = x[:,:H,:W,:].contiguous()

        x = x.view(B, H * W, C)#FFN
        x = shortcut + self.drop_path(x)
        x = x + self.drop_path(self.mlp(self.norm2(x)))return x

九:模型整体流程代码实现:

""" Swin Transformer
A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows`
    - https://arxiv.org/pdf/2103.14030

Code/weights from https://github.com/microsoft/Swin-Transformer"""

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
import numpy as np
from typing import Optional

def drop_path_f(x, drop_prob:float=0., training: bool = False):"""Drop paths(Stochastic Depth) per sample(when applied in main path of residual blocks).

    This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
    the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
    See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
    changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
    'survival rate' as the argument."""
    if drop_prob ==0. or not training:return x
    keep_prob =1- drop_prob
    shape =(x.shape[0],)+(1,)*(x.ndim -1)  # work with diff dim tensors, not just 2D ConvNets
    random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
    random_tensor.floor_()  # binarize
    output = x.div(keep_prob)* random_tensor
    return output

class DropPath(nn.Module):"""Drop paths(Stochastic Depth) per sample(when applied in main path of residual blocks)."""
    def __init__(self, drop_prob=None):super(DropPath, self).__init__()
        self.drop_prob = drop_prob

    def forward(self, x):returndrop_path_f(x, self.drop_prob, self.training)"""
    将窗口按照window_size的大小进行划分,得到一个个窗口
"""
def window_partition(x, window_size:int):"""
    将feature map按照window_size划分成一个个没有重叠的window
    Args:
        x:(B, H, W, C)window_size(int): window size(M)

    Returns:
        windows:(num_windows*B, window_size, window_size, C)"""
    B, H, W, C = x.shape
    x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)#permute:[B, H//Mh, Mh, W//Mw, Mw, C] -> [B, H//Mh, W//Mh, Mw, Mw, C]#view:[B, H//Mh, W//Mw, Mh, Mw, C] -> [B*num_windows, Mh, Mw, C]
    windows = x.permute(0,1,3,2,4,5).contiguous().view(-1, window_size, window_size, C)   # 输出的是按照指定的window_size划分成一个一个窗口的数据
    return windows

def window_reverse(windows, window_size:int, H:int, W:int):"""
    将一个个window还原成一个feature map
    Args:
        windows:(num_windows*B, window_size, window_size, C)window_size(int): Window size(M)H(int): Height of image
        W(int): Width of image

    Returns:
        x:(B, H, W, C)"""
    B =int(windows.shape[0]/(H * W / window_size / window_size))#view:[B*num_windows, Mh, Mw, C]->[B, H//Mh, W//Mw, Mh, Mw, C]
    x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)#permute:[B, H//Mh, W//Mw, Mh, Mw, C] -> [B, H//Mh, Mh, W//Mw, Mw, C]#view:[B, H//Mh, Mh, W//Mw, Mw, C] -> [B, H, W, C]
    x = x.permute(0,1,3,2,4,5).contiguous().view(B, H, W,-1)return x

class PatchEmbed(nn.Module):"""
    2D Image to Patch Embedding
    split image into non-overlapping patches   即将图片划分成一个个没有重叠的patch
    """
    def __init__(self, patch_size=4, in_c=3, embed_dim=96, norm_layer=None):super().__init__()
        patch_size =(patch_size, patch_size)
        self.patch_size = patch_size
        self.in_chans = in_c
        self.embed_dim = embed_dim
        self.proj = nn.Conv2d(in_c, embed_dim, kernel_size=patch_size, stride=patch_size)
        self.norm =norm_layer(embed_dim)if norm_layer else nn.Identity()

    def forward(self, x):
        _, _, H, W = x.shape

        #padding
        # 如果输入图片的H,W不是patch_size的整数倍,需要进行padding
        pad_input =(H % self.patch_size[0]!=0)or(W % self.patch_size[1]!=0)if pad_input:#topad the last 3 dimensions,
            # (W_left, W_right, H_top,H_bottom, C_front, C_back)
            x = F.pad(x,(0, self.patch_size[1]- W % self.patch_size[1],   # 表示宽度方向右侧填充数
                          0, self.patch_size[0]- H % self.patch_size[0],   # 表示高度方向底部填充数
                          0,0))

        # 下采样patch_size倍
        x = self.proj(x)
        _, _, H, W = x.shape
        #flatten:[B, C, H, W]->[B, C, HW]#transpose:[B, C, HW]->[B, HW, C]
        x = x.flatten(2).transpose(1,2)
        x = self.norm(x)return x, H, W

class PatchMerging(nn.Module):
    r""" Patch Merging Layer.
        步长为2,间隔采样
    Args:dim(int): Number of input channels.norm_layer(nn.Module, optional): Normalization layer.  Default: nn.LayerNorm
    """

    def __init__(self, dim, norm_layer=nn.LayerNorm):super().__init__()
        self.dim = dim
        self.reduction = nn.Linear(4* dim,2* dim, bias=False)
        self.norm =norm_layer(4* dim)

    def forward(self, x, H, W):"""
        x: B, H*W, C    即输入x的通道排列顺序
        """
        B, L, C = x.shape
        assert L == H * W,"input feature has wrong size"

        x = x.view(B, H, W, C)#padding
        # 如果输入feature map的H,W不是2的整数倍,需要进行padding
        pad_input =(H %2==1)or(W %2==1)if pad_input:#topad the last 3 dimensions, starting from the last dimension and moving forward.
            # (C_front, C_back, W_left, W_right, H_top, H_bottom)
            # 注意这里的Tensor通道是[B, H, W, C],所以会和官方文档有些不同
            x = F.pad(x,(0,0,0, W %2,0, H %2))

        # 以2为间隔进行采样
        x0 = x[:,0::2,0::2,:]  # [B, H/2, W/2, C]
        x1 = x[:,1::2,0::2,:]  # [B, H/2, W/2, C]
        x2 = x[:,0::2,1::2,:]  # [B, H/2, W/2, C]
        x3 = x[:,1::2,1::2,:]  # [B, H/2, W/2, C]
        x = torch.cat([x0, x1, x2, x3],-1)  #  ————————>[B, H/2, W/2,4*C]   在channael维度上进行拼接
        x = x.view(B,-1,4* C)  # [B, H/2*W/2,4*C]

        x = self.norm(x)
        x = self.reduction(x)  # [B, H/2*W/2,2*C]return x

"""
MLP模块
"""
class Mlp(nn.Module):""" MLP as used in Vision Transformer, MLP-Mixer and related networks
    """
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features

        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act =act_layer()
        self.drop1 = nn.Dropout(drop)
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop2 = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop1(x)
        x = self.fc2(x)
        x = self.drop2(x)return x

"""
WindowAttention即为:SW-MSA或者W-MSA模块
"""
class WindowAttention(nn.Module):
    r""" Window based multi-head self attention(W-MSA) module with relative position bias.
    It supports both of shifted and non-shifted window.

    Args:dim(int): Number of input channels.window_size(tuple[int]): The height and width of the window.num_heads(int): Number of attention heads.qkv_bias(bool, optional):  If True, add a learnable bias to query, key, value. Default: True
        attn_drop(float, optional): Dropout ratio of attention weight. Default:0.0proj_drop(float, optional): Dropout ratio of output. Default:0.0"""

    def __init__(self, dim, window_size, num_heads, qkv_bias=True, attn_drop=0., proj_drop=0.):super().__init__()
        self.dim = dim
        self.window_size = window_size  # [Mh, Mw]
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = head_dim **-0.5#defineaparameter table of relative position bias
        # 创建偏置bias项矩阵
        self.relative_position_bias_table = nn.Parameter(
            torch.zeros((2* window_size[0]-1)*(2* window_size[1]-1), num_heads))  # [2*Mh-1*2*Mw-1, nH]    其元素的个数===>>[(2*Mh-1)*(2*Mw-1)]#getpair-wise relative position index for each token inside the window
        coords_h = torch.arange(self.window_size[0])  # 如果此处的self.window_size[0]为2的话,则生成的coords_h为[0,1]
        coords_w = torch.arange(self.window_size[1])  # 同理得
        coords = torch.stack(torch.meshgrid([coords_h, coords_w]))  # [2, Mh, Mw]
        coords_flatten = torch.flatten(coords,1)  # [2, Mh*Mw]
        # [2, Mh*Mw,1]-[2,1, Mh*Mw]
        relative_coords = coords_flatten[:,:, None]- coords_flatten[:, None,:]  # [2, Mh*Mw, Mh*Mw]
        relative_coords = relative_coords.permute(1,2,0).contiguous()  # [Mh*Mw, Mh*Mw,2]
        relative_coords[:,:,0]+= self.window_size[0]-1  # shift to start from 0  行标+(M-1)
        relative_coords[:,:,1]+= self.window_size[1]-1     # 列表标+(M-1)
        relative_coords[:,:,0]*=2* self.window_size[1]-1
        relative_position_index = relative_coords.sum(-1)  # [Mh*Mw, Mh*Mw]
        self.register_buffer("relative_position_index", relative_position_index)   # 将relative_position_index放入到模型的缓存当中

        self.qkv = nn.Linear(dim, dim *3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

        nn.init.trunc_normal_(self.relative_position_bias_table, std=.02)
        self.softmax = nn.Softmax(dim=-1)

    def forward(self, x, mask: Optional[torch.Tensor]= None):"""
        Args:
            x: input features with shape of(num_windows*B, Mh*Mw, C)
            mask:(0/-inf) mask with shape of(num_windows, Wh*Ww, Wh*Ww) or None
        """
        # [batch_size*num_windows, Mh*Mw, total_embed_dim]
        B_, N, C = x.shape
        #qkv():->[batch_size*num_windows, Mh*Mw,3* total_embed_dim]#reshape:->[batch_size*num_windows, Mh*Mw,3, num_heads, embed_dim_per_head]#permute:->[3, batch_size*num_windows, num_heads, Mh*Mw, embed_dim_per_head]
        qkv = self.qkv(x).reshape(B_, N,3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        # [batch_size*num_windows, num_heads, Mh*Mw, embed_dim_per_head]
        q, k, v = qkv.unbind(0)  # make torchscript happy(cannot use tensor as tuple)#transpose:->[batch_size*num_windows, num_heads, embed_dim_per_head, Mh*Mw]
        # @: multiply ->[batch_size*num_windows, num_heads, Mh*Mw, Mh*Mw]
        q = q * self.scale
        attn =(q @ k.transpose(-2,-1))#relative_position_bias_table.view:[Mh*Mw*Mh*Mw,nH]->[Mh*Mw,Mh*Mw,nH]
        relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
            self.window_size[0]* self.window_size[1], self.window_size[0]* self.window_size[1],-1)
        relative_position_bias = relative_position_bias.permute(2,0,1).contiguous()  # [nH, Mh*Mw, Mh*Mw]
        attn = attn + relative_position_bias.unsqueeze(0)

        # 进行mask,相同区域使用0表示;不同区域使用-100表示
        if mask is not None:#mask:[nW, Mh*Mw, Mh*Mw]
            nW = mask.shape[0]  # num_windows
            #attn.view:[batch_size, num_windows, num_heads, Mh*Mw, Mh*Mw]#mask.unsqueeze:[1, nW,1, Mh*Mw, Mh*Mw]
            attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
            attn = attn.view(-1, self.num_heads, N, N)
            attn = self.softmax(attn)else:
            attn = self.softmax(attn)

        attn = self.attn_drop(attn)

        # @: multiply ->[batch_size*num_windows, num_heads, Mh*Mw, embed_dim_per_head]#transpose:->[batch_size*num_windows, Mh*Mw, num_heads, embed_dim_per_head]#reshape:->[batch_size*num_windows, Mh*Mw, total_embed_dim]
        x =(attn @ v).transpose(1,2).reshape(B_, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)return x

"""
    SwinTransformerBlock
"""
class SwinTransformerBlock(nn.Module):
    r""" Swin Transformer Block.

    Args:dim(int): Number of input channels.num_heads(int): Number of attention heads.window_size(int): Window size.shift_size(int): Shift size for SW-MSA.mlp_ratio(float): Ratio of mlp hidden dim to embedding dim.qkv_bias(bool, optional): If True, add a learnable bias to query, key, value. Default: True
        drop(float, optional): Dropout rate. Default:0.0attn_drop(float, optional): Attention dropout rate. Default:0.0drop_path(float, optional): Stochastic depth rate. Default:0.0act_layer(nn.Module, optional): Activation layer. Default: nn.GELU
        norm_layer(nn.Module, optional): Normalization layer.  Default: nn.LayerNorm
    """

    def __init__(self, dim, num_heads, window_size=7, shift_size=0,
                 mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., drop_path=0.,
                 act_layer=nn.GELU, norm_layer=nn.LayerNorm):super().__init__()
        self.dim = dim
        self.num_heads = num_heads
        self.window_size = window_size
        self.shift_size = shift_size
        self.mlp_ratio = mlp_ratio
        assert 0<= self.shift_size < self.window_size,"shift_size must in 0-window_size"

        self.norm1 =norm_layer(dim)    # 先经过层归一化处理

        #WindowAttention即为:SW-MSA或者W-MSA模块
        self.attn =WindowAttention(
            dim, window_size=(self.window_size, self.window_size), num_heads=num_heads, qkv_bias=qkv_bias,
            attn_drop=attn_drop, proj_drop=drop)

        self.drop_path =DropPath(drop_path)if drop_path >0.else nn.Identity()
        self.norm2 =norm_layer(dim)
        mlp_hidden_dim =int(dim * mlp_ratio)
        self.mlp =Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)

    def forward(self, x, attn_mask):
        H, W = self.H, self.W
        B, L, C = x.shape
        assert L == H * W,"input feature has wrong size"

        shortcut = x
        x = self.norm1(x)
        x = x.view(B, H, W, C)#padfeature maps to multiples of window size
        # 把feature map给pad到window size的整数倍
        pad_l =pad_t=0
        pad_r =(self.window_size - W % self.window_size)% self.window_size
        pad_b =(self.window_size - H % self.window_size)% self.window_size
        x = F.pad(x,(0,0, pad_l, pad_r,pad_t, pad_b))
        _, Hp, Wp, _ = x.shape

        #cyclicshift
        # 判断是进行SW-MSA或者是W-MSA模块
        if self.shift_size >0:#https://blog.csdn.net/ooooocj/article/details/126046858?ops_request_misc=&request_id=&biz_id=102&utm_term=torch.roll()%E7%94%A8%E6%B3%95&utm_medium=distribute.pc_search_result.none-task-blog-2~all~sobaiduweb~default-0-126046858.142^v73^control,201^v4^add_ask,239^v1^control&spm=1018.2226.3001.4187
            shifted_x = torch.roll(x, shifts=(-self.shift_size,-self.shift_size), dims=(1,2))    #进行数据移动操作
        else:
            shifted_x = x
            attn_mask = None

        #partitionwindows
        # 将窗口按照window_size的大小进行划分,得到一个个窗口
        x_windows =window_partition(shifted_x, self.window_size)  # [nW*B, Mh, Mw, C]
        # 将数据进行展平操作
        x_windows = x_windows.view(-1, self.window_size * self.window_size, C)  # [nW*B, Mh*Mw, C]#W-MSA/SW-MSA"""
            # 进行多头自注意力机制操作
        """
        attn_windows = self.attn(x_windows, mask=attn_mask)  # [nW*B, Mh*Mw, C]#mergewindows
        attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)  # [nW*B, Mh, Mw, C]
        # 将多窗口拼接回大的featureMap
        shifted_x =window_reverse(attn_windows, self.window_size, Hp, Wp)  # [B, H', W', C]#reversecyclic shift
        # 将移位的数据进行还原
        if self.shift_size >0:
            x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1,2))else:
            x = shifted_x
        # 如果进行了padding操作,需要移出掉相应的pad
        if pad_r >0 or pad_b >0:
            # 把前面pad的数据移除掉
            x = x[:,:H,:W,:].contiguous()

        x = x.view(B, H * W, C)#FFN
        x = shortcut + self.drop_path(x)
        x = x + self.drop_path(self.mlp(self.norm2(x)))return x

class BasicLayer(nn.Module):"""
    A basic Swin Transformer layer for one stage.

    Args:dim(int): Number of input channels.depth(int): Number of blocks.num_heads(int): Number of attention heads.window_size(int): Local window size.mlp_ratio(float): Ratio of mlp hidden dim to embedding dim.qkv_bias(bool, optional): If True, add a learnable bias to query, key, value. Default: True
        drop(float, optional): Dropout rate. Default:0.0attn_drop(float, optional): Attention dropout rate. Default:0.0drop_path(float| tuple[float], optional): Stochastic depth rate. Default:0.0norm_layer(nn.Module, optional): Normalization layer. Default: nn.LayerNorm
        downsample(nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
        use_checkpoint(bool): Whether to use checkpointing to save memory. Default: False."""

    def __init__(self, dim, depth, num_heads, window_size,
                 mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0.,
                 drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False):super().__init__()
        self.dim = dim
        self.depth = depth
        self.window_size = window_size
        self.use_checkpoint = use_checkpoint
        self.shift_size = window_size // 2  # 表示向右和向下偏移的窗口大小   即窗口大小除以2,然后向下取整#buildblocks
        self.blocks = nn.ModuleList([SwinTransformerBlock(
                dim=dim,
                num_heads=num_heads,
                window_size=window_size,
                shift_size=0if(i %2==0)else self.shift_size,   # 通过判断shift_size是否等于0,来决定是使用W-MSA与SW-MSA
                mlp_ratio=mlp_ratio,
                qkv_bias=qkv_bias,
                drop=drop,
                attn_drop=attn_drop,
                drop_path=drop_path[i]ifisinstance(drop_path, list)else drop_path,
                norm_layer=norm_layer)for i in range(depth)])#patchmerging layer    即:PatchMerging类if downsample is not None:
            self.downsample =downsample(dim=dim, norm_layer=norm_layer)else:
            self.downsample = None

    def create_mask(self, x, H, W):#calculateattention mask for SW-MSA
        # 保证Hp和Wp是window_size的整数倍
        Hp =int(np.ceil(H / self.window_size))* self.window_size
        Wp =int(np.ceil(W / self.window_size))* self.window_size
        # 拥有和feature map一样的通道排列顺序,方便后续window_partition
        img_mask = torch.zeros((1, Hp, Wp,1), device=x.device)  # [1, Hp, Wp,1]
        h_slices =(slice(0,-self.window_size),slice(-self.window_size,-self.shift_size),slice(-self.shift_size, None))
        w_slices =(slice(0,-self.window_size),slice(-self.window_size,-self.shift_size),slice(-self.shift_size, None))
        cnt =0for h in h_slices:for w in w_slices:
                img_mask[:, h, w,:]= cnt
                cnt +=1

        # 将img_mask划分成一个一个窗口
        mask_windows =window_partition(img_mask, self.window_size)  # [nW, Mh, Mw,1]           # 输出的是按照指定的window_size划分成一个一个窗口的数据
        mask_windows = mask_windows.view(-1, self.window_size * self.window_size)  # [nW, Mh*Mw]
        attn_mask = mask_windows.unsqueeze(1)- mask_windows.unsqueeze(2)  # [nW,1, Mh*Mw]-[nW, Mh*Mw,1]  使用了广播机制
        # [nW, Mh*Mw, Mh*Mw]
        # 因为需要求得的是自身注意力机制,所以,所以相同的区域使用0表示,;不同的区域不等于0,填入-100,这样,在求得
        attn_mask = attn_mask.masked_fill(attn_mask !=0,float(-100.0)).masked_fill(attn_mask ==0,float(0.0))   # 即对于不等于0的位置,赋值为-100;否则为0return attn_mask

    def forward(self, x, H, W):
        attn_mask = self.create_mask(x, H, W)  # [nW, Mh*Mw, Mh*Mw]   # 制作mask蒙版
        for blk in self.blocks:
            blk.H, blk.W = H, W
            if not torch.jit.is_scripting() and self.use_checkpoint:
                x = checkpoint.checkpoint(blk, x, attn_mask)else:
                x =blk(x, attn_mask)if self.downsample is not None:
            x = self.downsample(x, H, W)
            H, W =(H +1)// 2, (W + 1) // 2return x, H, W

class SwinTransformer(nn.Module):
    r""" Swin Transformer
        A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows`  -
          https://arxiv.org/pdf/2103.14030

    Args:patch_size(int|tuple(int)): Patch size. Default:4   表示通过Patch Partition层后,下采样几倍
        in_chans(int): Number of input image channels. Default:3num_classes(int): Number of classes for classification head. Default:1000embed_dim(int): Patch embedding dimension. Default:96depths(tuple(int)): Depth of each Swin Transformer layer.num_heads(tuple(int)): Number of attention heads in different layers.window_size(int): Window size. Default:7mlp_ratio(float): Ratio of mlp hidden dim to embedding dim. Default:4qkv_bias(bool): If True, add a learnable bias to query, key, value. Default: True
        drop_rate(float): Dropout rate. Default:0attn_drop_rate(float): Attention dropout rate. Default:0drop_path_rate(float): Stochastic depth rate. Default:0.1norm_layer(nn.Module): Normalization layer. Default: nn.LayerNorm.patch_norm(bool): If True, add normalization after patch embedding. Default: True
        use_checkpoint(bool): Whether to use checkpointing to save memory. Default: False
    """

    def __init__(self, patch_size=4,  # 表示通过Patch Partition层后,下采样几倍
                 in_chans=3,           # 输入图像通道
                 num_classes=1000,     # 类别数
                 embed_dim=96,         # Patch partition层后的LinearEmbedding层映射后的维度,之后的几层都是该数的整数倍  分别是 C、2C、4C、8C
                 depths=(2,2,6,2),  # 表示每一个Stage模块内,Swin Transformer Block重复的次数
                 num_heads=(3,6,12,24),  # 表示每一个Stage模块内,Swin Transformer Block中采用的Multi-Head self-Attention的head的个数
                 window_size=7,         # 表示W-MSA与SW-MSA所采用的window的大小
                 mlp_ratio=4.,          # 表示MLP模块中,第一个全连接层增大的倍数
                 qkv_bias=True,
                 drop_rate=0.,          # 对应的PatchEmbed层后面的
                 attn_drop_rate=0.,     # 对应于Multi-Head self-Attention模块中对应的dropRate
                 drop_path_rate=0.1,    # 对应于每一个Swin-Transformer模块中采用的DropRate   其是慢慢的递增的,从0增长到drop_path_rate
                 norm_layer=nn.LayerNorm,
                 patch_norm=True,
                 use_checkpoint=False,**kwargs):super().__init__()

        self.num_classes = num_classes
        self.num_layers =len(depths)  # depths:表示重复的Swin Transoformer Block模块的次数  表示每一个Stage模块内,Swin Transformer Block重复的次数
        self.embed_dim = embed_dim
        self.patch_norm = patch_norm
        #stage4输出特征矩阵的channels
        self.num_features =int(embed_dim *2**(self.num_layers -1))
        self.mlp_ratio = mlp_ratio

        #splitimage into non-overlapping patches   即将图片划分成一个个没有重叠的patch
        self.patch_embed =PatchEmbed(
            patch_size=patch_size, in_c=in_chans, embed_dim=embed_dim,
            norm_layer=norm_layer if self.patch_norm else None)
        self.pos_drop = nn.Dropout(p=drop_rate)   # PatchEmbed层后面的Dropout层

        #stochasticdepth
        dpr =[x.item()for x in torch.linspace(0, drop_path_rate,sum(depths))]  # stochastic depth decay rule

        #buildlayers
        self.layers = nn.ModuleList()for i_layer in range(self.num_layers):
            # 注意这里构建的stage和论文图中有些差异
            # 这里的stage不包含该stage的patch_merging层,包含的是下个stage的
            layers =BasicLayer(dim=int(embed_dim *2** i_layer),  # 传入特征矩阵的维度,即channel方向的深度
                                depth=depths[i_layer],              # 表示当前stage中需要堆叠的多少Swin Transformer Block
                                num_heads=num_heads[i_layer],       # 表示每一个Stage模块内,Swin Transformer Block中采用的Multi-Head self-Attention的head的个数
                                window_size=window_size,            # 表示W-MSA与SW-MSA所采用的window的大小
                                mlp_ratio=self.mlp_ratio,           # 表示MLP模块中,第一个全连接层增大的倍数
                                qkv_bias=qkv_bias,
                                drop=drop_rate,                     # 对应的PatchEmbed层后面的
                                attn_drop=attn_drop_rate,           # 对应于Multi-Head self-Attention模块中对应的dropRate
                                drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer +1])],     # 对应于每一个Swin-Transformer模块中采用的DropRate   其是慢慢的递增的,从0增长到drop_path_rate
                                norm_layer=norm_layer,
                                downsample=PatchMerging if(i_layer < self.num_layers -1)else None,   # 判断是否是第四个,因为第四个Stage是没有PatchMerging层的
                                use_checkpoint=use_checkpoint)
            self.layers.append(layers)

        self.norm =norm_layer(self.num_features)
        self.avgpool = nn.AdaptiveAvgPool1d(1)   # 自适应的全局平均池化
        self.head = nn.Linear(self.num_features, num_classes)if num_classes >0else nn.Identity()

        self.apply(self._init_weights)

    def _init_weights(self, m):ifisinstance(m, nn.Linear):
            nn.init.trunc_normal_(m.weight, std=.02)ifisinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias,0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias,0)
            nn.init.constant_(m.weight,1.0)

    def forward(self, x):#x:[B, L, C]
        x, H, W = self.patch_embed(x)  # 对图像下采样4倍
        x = self.pos_drop(x)

        # 依次传入各个stage中
        for layer in self.layers:
            x, H, W =layer(x, H, W)

        x = self.norm(x)  # [B, L, C]
        x = self.avgpool(x.transpose(1,2))  # [B, C,1]
        x = torch.flatten(x,1)
        x = self.head(x)   # 经过全连接层,得到输出
        return x

def swin_tiny_patch4_window7_224(num_classes:int=1000,**kwargs):#trainedImageNet-1K#https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_tiny_patch4_window7_224.pth
    model =SwinTransformer(in_chans=3,
                            patch_size=4,
                            window_size=7,
                            embed_dim=96,
                            depths=(2,2,6,2),
                            num_heads=(3,6,12,24),
                            num_classes=num_classes,**kwargs)return model

def swin_small_patch4_window7_224(num_classes:int=1000,**kwargs):#trainedImageNet-1K#https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_small_patch4_window7_224.pth
    model =SwinTransformer(in_chans=3,
                            patch_size=4,
                            window_size=7,
                            embed_dim=96,
                            depths=(2,2,18,2),
                            num_heads=(3,6,12,24),
                            num_classes=num_classes,**kwargs)return model

def swin_base_patch4_window7_224(num_classes:int=1000,**kwargs):#trainedImageNet-1K#https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window7_224.pth
    model =SwinTransformer(in_chans=3,
                            patch_size=4,
                            window_size=7,
                            embed_dim=128,
                            depths=(2,2,18,2),
                            num_heads=(4,8,16,32),
                            num_classes=num_classes,**kwargs)return model

def swin_base_patch4_window12_384(num_classes:int=1000,**kwargs):#trainedImageNet-1K#https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window12_384.pth
    model =SwinTransformer(in_chans=3,
                            patch_size=4,
                            window_size=12,
                            embed_dim=128,
                            depths=(2,2,18,2),
                            num_heads=(4,8,16,32),
                            num_classes=num_classes,**kwargs)return model

def swin_base_patch4_window7_224_in22k(num_classes:int=21841,**kwargs):#trainedImageNet-22K#https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window7_224_22k.pth
    model =SwinTransformer(in_chans=3,
                            patch_size=4,
                            window_size=7,
                            embed_dim=128,
                            depths=(2,2,18,2),
                            num_heads=(4,8,16,32),
                            num_classes=num_classes,**kwargs)return model

def swin_base_patch4_window12_384_in22k(num_classes:int=21841,**kwargs):#trainedImageNet-22K#https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window12_384_22k.pth
    model =SwinTransformer(in_chans=3,
                            patch_size=4,
                            window_size=12,
                            embed_dim=128,
                            depths=(2,2,18,2),
                            num_heads=(4,8,16,32),
                            num_classes=num_classes,**kwargs)return model

def swin_large_patch4_window7_224_in22k(num_classes:int=21841,**kwargs):#trainedImageNet-22K#https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window7_224_22k.pth
    model =SwinTransformer(in_chans=3,
                            patch_size=4,
                            window_size=7,
                            embed_dim=192,
                            depths=(2,2,18,2),
                            num_heads=(6,12,24,48),
                            num_classes=num_classes,**kwargs)return model

def swin_large_patch4_window12_384_in22k(num_classes:int=21841,**kwargs):#trainedImageNet-22K#https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window12_384_22k.pth
    model =SwinTransformer(in_chans=3,
                            patch_size=4,
                            window_size=12,
                            embed_dim=192,
                            depths=(2,2,18,2),
                            num_heads=(6,12,24,48),
                            num_classes=num_classes,**kwargs)return model

本文转载自: https://blog.csdn.net/guoqingru0311/article/details/128963854
版权归原作者 郭庆汝 所有, 如有侵权,请联系我们删除。

“深度学习网络模型————Swin-Transformer详细讲解与代码实现”的评论:

还没有评论