0


深度学习网络模型————Swin-Transformer详细讲解与代码实现

深度学习网络模型——Swin-Transformer详细讲解与代码实现

论文名称:Swin Transformer: Hierarchical Vision Transformer using Shifted Windows

原论文地址https://arxiv.org/abs/2103.14030

官方开源代码地址https://github.com/microsoft/Swin-Transformer

在这里插入图片描述

一、网路模型整体架构

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

二、Patch Partition模块详解

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

三、Patch Merging模块

在这里插入图片描述
在这里插入图片描述

四、W-MSA详解

在这里插入图片描述

在这里插入图片描述

五、SW-MSA详解

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

masked MSA详解

在这里插入图片描述

六、 Relative Position Bias详解

在这里插入图片描述
在这里插入图片描述

七、模型详细配置参数

在这里插入图片描述

八、重要模块代码实现:

1、Patch Partition代码模块:

  1. class PatchEmbed(nn.Module):"""
  2. 2D Image to Patch Embedding
  3. split image into non-overlapping patches 即将图片划分成一个个没有重叠的patch
  4. """
  5. def __init__(self, patch_size=4, in_c=3, embed_dim=96, norm_layer=None):super().__init__()
  6. patch_size =(patch_size, patch_size)
  7. self.patch_size = patch_size
  8. self.in_chans = in_c
  9. self.embed_dim = embed_dim
  10. self.proj = nn.Conv2d(in_c, embed_dim, kernel_size=patch_size, stride=patch_size)
  11. self.norm =norm_layer(embed_dim)if norm_layer else nn.Identity()
  12. def forward(self, x):
  13. _, _, H, W = x.shape
  14. #padding
  15. # 如果输入图片的H,W不是patch_size的整数倍,需要进行padding
  16. pad_input =(H % self.patch_size[0]!=0)or(W % self.patch_size[1]!=0)if pad_input:#topad the last 3 dimensions,
  17. # (W_left, W_right, H_top,H_bottom, C_front, C_back)
  18. x = F.pad(x,(0, self.patch_size[1]- W % self.patch_size[1], # 表示宽度方向右侧填充数
  19. 0, self.patch_size[0]- H % self.patch_size[0], # 表示高度方向底部填充数
  20. 0,0))
  21. # 下采样patch_size倍
  22. x = self.proj(x)
  23. _, _, H, W = x.shape
  24. #flatten:[B, C, H, W]->[B, C, HW]#transpose:[B, C, HW]->[B, HW, C]
  25. x = x.flatten(2).transpose(1,2)
  26. x = self.norm(x)return x, H, W

2、Patch Merging代码模块:

  1. class PatchMerging(nn.Module):
  2. r""" Patch Merging Layer.
  3. 步长为2,间隔采样
  4. Args:dim(int): Number of input channels.norm_layer(nn.Module, optional): Normalization layer. Default: nn.LayerNorm
  5. """
  6. def __init__(self, dim, norm_layer=nn.LayerNorm):super().__init__()
  7. self.dim = dim
  8. self.reduction = nn.Linear(4* dim,2* dim, bias=False)
  9. self.norm =norm_layer(4* dim)
  10. def forward(self, x, H, W):"""
  11. x: B, H*W, C 即输入x的通道排列顺序
  12. """
  13. B, L, C = x.shape
  14. assert L == H * W,"input feature has wrong size"
  15. x = x.view(B, H, W, C)#padding
  16. # 如果输入feature map的H,W不是2的整数倍,需要进行padding
  17. pad_input =(H %2==1)or(W %2==1)if pad_input:#topad the last 3 dimensions, starting from the last dimension and moving forward.
  18. # (C_front, C_back, W_left, W_right, H_top, H_bottom)
  19. # 注意这里的Tensor通道是[B, H, W, C],所以会和官方文档有些不同
  20. x = F.pad(x,(0,0,0, W %2,0, H %2))
  21. # 以2为间隔进行采样
  22. x0 = x[:,0::2,0::2,:] # [B, H/2, W/2, C]
  23. x1 = x[:,1::2,0::2,:] # [B, H/2, W/2, C]
  24. x2 = x[:,0::2,1::2,:] # [B, H/2, W/2, C]
  25. x3 = x[:,1::2,1::2,:] # [B, H/2, W/2, C]
  26. x = torch.cat([x0, x1, x2, x3],-1) # ————————>[B, H/2, W/2,4*C] 在channael维度上进行拼接
  27. x = x.view(B,-1,4* C) # [B, H/2*W/2,4*C]
  28. x = self.norm(x)
  29. x = self.reduction(x) # [B, H/2*W/2,2*C]return x

3、mask掩码生成代码模块:

  1. def create_mask(self, x, H, W):#calculateattention mask for SW-MSA
  2. # 保证Hp和Wp是window_size的整数倍
  3. Hp =int(np.ceil(H / self.window_size))* self.window_size
  4. Wp =int(np.ceil(W / self.window_size))* self.window_size
  5. # 拥有和feature map一样的通道排列顺序,方便后续window_partition
  6. img_mask = torch.zeros((1, Hp, Wp,1), device=x.device) # [1, Hp, Wp,1]
  7. h_slices =(slice(0,-self.window_size),slice(-self.window_size,-self.shift_size),slice(-self.shift_size, None))
  8. w_slices =(slice(0,-self.window_size),slice(-self.window_size,-self.shift_size),slice(-self.shift_size, None))
  9. cnt =0for h in h_slices:for w in w_slices:
  10. img_mask[:, h, w,:]= cnt
  11. cnt +=1
  12. # 将img_mask划分成一个一个窗口
  13. mask_windows =window_partition(img_mask, self.window_size) # [nW, Mh, Mw,1] # 输出的是按照指定的window_size划分成一个一个窗口的数据
  14. mask_windows = mask_windows.view(-1, self.window_size * self.window_size) # [nW, Mh*Mw]
  15. attn_mask = mask_windows.unsqueeze(1)- mask_windows.unsqueeze(2) # [nW,1, Mh*Mw]-[nW, Mh*Mw,1] 使用了广播机制
  16. # [nW, Mh*Mw, Mh*Mw]
  17. # 因为需要求得的是自身注意力机制,所以,所以相同的区域使用0表示,;不同的区域不等于0,填入-100,这样,在求得
  18. attn_mask = attn_mask.masked_fill(attn_mask !=0,float(-100.0)).masked_fill(attn_mask ==0,float(0.0)) # 即对于不等于0的位置,赋值为-100;否则为0return attn_mask

4、stage堆叠部分代码:

  1. class BasicLayer(nn.Module):"""
  2. A basic Swin Transformer layer for one stage.
  3. Args:dim(int): Number of input channels.depth(int): Number of blocks.num_heads(int): Number of attention heads.window_size(int): Local window size.mlp_ratio(float): Ratio of mlp hidden dim to embedding dim.qkv_bias(bool, optional): If True, add a learnable bias to query, key, value. Default: True
  4. drop(float, optional): Dropout rate. Default:0.0attn_drop(float, optional): Attention dropout rate. Default:0.0drop_path(float| tuple[float], optional): Stochastic depth rate. Default:0.0norm_layer(nn.Module, optional): Normalization layer. Default: nn.LayerNorm
  5. downsample(nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
  6. use_checkpoint(bool): Whether to use checkpointing to save memory. Default: False."""
  7. def __init__(self, dim, depth, num_heads, window_size,
  8. mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0.,
  9. drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False):super().__init__()
  10. self.dim = dim
  11. self.depth = depth
  12. self.window_size = window_size
  13. self.use_checkpoint = use_checkpoint
  14. self.shift_size = window_size // 2 # 表示向右和向下偏移的窗口大小 即窗口大小除以2,然后向下取整#buildblocks
  15. self.blocks = nn.ModuleList([SwinTransformerBlock(
  16. dim=dim,
  17. num_heads=num_heads,
  18. window_size=window_size,
  19. shift_size=0if(i %2==0)else self.shift_size, # 通过判断shift_size是否等于0,来决定是使用W-MSA与SW-MSA
  20. mlp_ratio=mlp_ratio,
  21. qkv_bias=qkv_bias,
  22. drop=drop,
  23. attn_drop=attn_drop,
  24. drop_path=drop_path[i]ifisinstance(drop_path, list)else drop_path,
  25. norm_layer=norm_layer)for i in range(depth)])#patchmerging layer 即:PatchMergingif downsample is not None:
  26. self.downsample =downsample(dim=dim, norm_layer=norm_layer)else:
  27. self.downsample = None
  28. def create_mask(self, x, H, W):#calculateattention mask for SW-MSA
  29. # 保证Hp和Wp是window_size的整数倍
  30. Hp =int(np.ceil(H / self.window_size))* self.window_size
  31. Wp =int(np.ceil(W / self.window_size))* self.window_size
  32. # 拥有和feature map一样的通道排列顺序,方便后续window_partition
  33. img_mask = torch.zeros((1, Hp, Wp,1), device=x.device) # [1, Hp, Wp,1]
  34. h_slices =(slice(0,-self.window_size),slice(-self.window_size,-self.shift_size),slice(-self.shift_size, None))
  35. w_slices =(slice(0,-self.window_size),slice(-self.window_size,-self.shift_size),slice(-self.shift_size, None))
  36. cnt =0for h in h_slices:for w in w_slices:
  37. img_mask[:, h, w,:]= cnt
  38. cnt +=1
  39. # 将img_mask划分成一个一个窗口
  40. mask_windows =window_partition(img_mask, self.window_size) # [nW, Mh, Mw,1] # 输出的是按照指定的window_size划分成一个一个窗口的数据
  41. mask_windows = mask_windows.view(-1, self.window_size * self.window_size) # [nW, Mh*Mw]
  42. attn_mask = mask_windows.unsqueeze(1)- mask_windows.unsqueeze(2) # [nW,1, Mh*Mw]-[nW, Mh*Mw,1] 使用了广播机制
  43. # [nW, Mh*Mw, Mh*Mw]
  44. # 因为需要求得的是自身注意力机制,所以,所以相同的区域使用0表示,;不同的区域不等于0,填入-100,这样,在求得
  45. attn_mask = attn_mask.masked_fill(attn_mask !=0,float(-100.0)).masked_fill(attn_mask ==0,float(0.0)) # 即对于不等于0的位置,赋值为-100;否则为0return attn_mask
  46. def forward(self, x, H, W):
  47. attn_mask = self.create_mask(x, H, W) # [nW, Mh*Mw, Mh*Mw] # 制作mask蒙版
  48. for blk in self.blocks:
  49. blk.H, blk.W = H, W
  50. if not torch.jit.is_scripting() and self.use_checkpoint:
  51. x = checkpoint.checkpoint(blk, x, attn_mask)else:
  52. x =blk(x, attn_mask)if self.downsample is not None:
  53. x = self.downsample(x, H, W)
  54. H, W =(H +1)// 2, (W + 1) // 2return x, H, W

5、SW-MSA或者W-MSA模块代码:

  1. class SwinTransformerBlock(nn.Module):
  2. r""" Swin Transformer Block.
  3. Args:dim(int): Number of input channels.num_heads(int): Number of attention heads.window_size(int): Window size.shift_size(int): Shift size for SW-MSA.mlp_ratio(float): Ratio of mlp hidden dim to embedding dim.qkv_bias(bool, optional): If True, add a learnable bias to query, key, value. Default: True
  4. drop(float, optional): Dropout rate. Default:0.0attn_drop(float, optional): Attention dropout rate. Default:0.0drop_path(float, optional): Stochastic depth rate. Default:0.0act_layer(nn.Module, optional): Activation layer. Default: nn.GELU
  5. norm_layer(nn.Module, optional): Normalization layer. Default: nn.LayerNorm
  6. """
  7. def __init__(self, dim, num_heads, window_size=7, shift_size=0,
  8. mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., drop_path=0.,
  9. act_layer=nn.GELU, norm_layer=nn.LayerNorm):super().__init__()
  10. self.dim = dim
  11. self.num_heads = num_heads
  12. self.window_size = window_size
  13. self.shift_size = shift_size
  14. self.mlp_ratio = mlp_ratio
  15. assert 0<= self.shift_size < self.window_size,"shift_size must in 0-window_size"
  16. self.norm1 =norm_layer(dim) # 先经过层归一化处理
  17. #WindowAttention即为:SW-MSA或者W-MSA模块
  18. self.attn =WindowAttention(
  19. dim, window_size=(self.window_size, self.window_size), num_heads=num_heads, qkv_bias=qkv_bias,
  20. attn_drop=attn_drop, proj_drop=drop)
  21. self.drop_path =DropPath(drop_path)if drop_path >0.else nn.Identity()
  22. self.norm2 =norm_layer(dim)
  23. mlp_hidden_dim =int(dim * mlp_ratio)
  24. self.mlp =Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
  25. def forward(self, x, attn_mask):
  26. H, W = self.H, self.W
  27. B, L, C = x.shape
  28. assert L == H * W,"input feature has wrong size"
  29. shortcut = x
  30. x = self.norm1(x)
  31. x = x.view(B, H, W, C)#padfeature maps to multiples of window size
  32. # 把feature map给pad到window size的整数倍
  33. pad_l =pad_t=0
  34. pad_r =(self.window_size - W % self.window_size)% self.window_size
  35. pad_b =(self.window_size - H % self.window_size)% self.window_size
  36. x = F.pad(x,(0,0, pad_l, pad_r,pad_t, pad_b))
  37. _, Hp, Wp, _ = x.shape
  38. #cyclicshift
  39. # 判断是进行SW-MSA或者是W-MSA模块
  40. if self.shift_size >0:#https://blog.csdn.net/ooooocj/article/details/126046858?ops_request_misc=&request_id=&biz_id=102&utm_term=torch.roll()%E7%94%A8%E6%B3%95&utm_medium=distribute.pc_search_result.none-task-blog-2~all~sobaiduweb~default-0-126046858.142^v73^control,201^v4^add_ask,239^v1^control&spm=1018.2226.3001.4187
  41. shifted_x = torch.roll(x, shifts=(-self.shift_size,-self.shift_size), dims=(1,2)) #进行数据移动操作
  42. else:
  43. shifted_x = x
  44. attn_mask = None
  45. #partitionwindows
  46. # 将窗口按照window_size的大小进行划分,得到一个个窗口
  47. x_windows =window_partition(shifted_x, self.window_size) # [nW*B, Mh, Mw, C]
  48. # 将数据进行展平操作
  49. x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # [nW*B, Mh*Mw, C]#W-MSA/SW-MSA"""
  50. # 进行多头自注意力机制操作
  51. """
  52. attn_windows = self.attn(x_windows, mask=attn_mask) # [nW*B, Mh*Mw, C]#mergewindows
  53. attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) # [nW*B, Mh, Mw, C]
  54. # 将多窗口拼接回大的featureMap
  55. shifted_x =window_reverse(attn_windows, self.window_size, Hp, Wp) # [B, H', W', C]#reversecyclic shift
  56. # 将移位的数据进行还原
  57. if self.shift_size >0:
  58. x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1,2))else:
  59. x = shifted_x
  60. # 如果进行了padding操作,需要移出掉相应的pad
  61. if pad_r >0 or pad_b >0:
  62. # 把前面pad的数据移除掉
  63. x = x[:,:H,:W,:].contiguous()
  64. x = x.view(B, H * W, C)#FFN
  65. x = shortcut + self.drop_path(x)
  66. x = x + self.drop_path(self.mlp(self.norm2(x)))return x

九:模型整体流程代码实现:

  1. """ Swin Transformer
  2. A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows`
  3. - https://arxiv.org/pdf/2103.14030
  4. Code/weights from https://github.com/microsoft/Swin-Transformer"""
  5. import torch
  6. import torch.nn as nn
  7. import torch.nn.functional as F
  8. import torch.utils.checkpoint as checkpoint
  9. import numpy as np
  10. from typing import Optional
  11. def drop_path_f(x, drop_prob:float=0., training: bool = False):"""Drop paths(Stochastic Depth) per sample(when applied in main path of residual blocks).
  12. This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
  13. the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
  14. See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
  15. changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
  16. 'survival rate' as the argument."""
  17. if drop_prob ==0. or not training:return x
  18. keep_prob =1- drop_prob
  19. shape =(x.shape[0],)+(1,)*(x.ndim -1) # work with diff dim tensors, not just 2D ConvNets
  20. random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
  21. random_tensor.floor_() # binarize
  22. output = x.div(keep_prob)* random_tensor
  23. return output
  24. class DropPath(nn.Module):"""Drop paths(Stochastic Depth) per sample(when applied in main path of residual blocks)."""
  25. def __init__(self, drop_prob=None):super(DropPath, self).__init__()
  26. self.drop_prob = drop_prob
  27. def forward(self, x):returndrop_path_f(x, self.drop_prob, self.training)"""
  28. 将窗口按照window_size的大小进行划分,得到一个个窗口
  29. """
  30. def window_partition(x, window_size:int):"""
  31. 将feature map按照window_size划分成一个个没有重叠的window
  32. Args:
  33. x:(B, H, W, C)window_size(int): window size(M)
  34. Returns:
  35. windows:(num_windows*B, window_size, window_size, C)"""
  36. B, H, W, C = x.shape
  37. x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)#permute:[B, H//Mh, Mh, W//Mw, Mw, C] -> [B, H//Mh, W//Mh, Mw, Mw, C]#view:[B, H//Mh, W//Mw, Mh, Mw, C] -> [B*num_windows, Mh, Mw, C]
  38. windows = x.permute(0,1,3,2,4,5).contiguous().view(-1, window_size, window_size, C) # 输出的是按照指定的window_size划分成一个一个窗口的数据
  39. return windows
  40. def window_reverse(windows, window_size:int, H:int, W:int):"""
  41. 将一个个window还原成一个feature map
  42. Args:
  43. windows:(num_windows*B, window_size, window_size, C)window_size(int): Window size(M)H(int): Height of image
  44. W(int): Width of image
  45. Returns:
  46. x:(B, H, W, C)"""
  47. B =int(windows.shape[0]/(H * W / window_size / window_size))#view:[B*num_windows, Mh, Mw, C]->[B, H//Mh, W//Mw, Mh, Mw, C]
  48. x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)#permute:[B, H//Mh, W//Mw, Mh, Mw, C] -> [B, H//Mh, Mh, W//Mw, Mw, C]#view:[B, H//Mh, Mh, W//Mw, Mw, C] -> [B, H, W, C]
  49. x = x.permute(0,1,3,2,4,5).contiguous().view(B, H, W,-1)return x
  50. class PatchEmbed(nn.Module):"""
  51. 2D Image to Patch Embedding
  52. split image into non-overlapping patches 即将图片划分成一个个没有重叠的patch
  53. """
  54. def __init__(self, patch_size=4, in_c=3, embed_dim=96, norm_layer=None):super().__init__()
  55. patch_size =(patch_size, patch_size)
  56. self.patch_size = patch_size
  57. self.in_chans = in_c
  58. self.embed_dim = embed_dim
  59. self.proj = nn.Conv2d(in_c, embed_dim, kernel_size=patch_size, stride=patch_size)
  60. self.norm =norm_layer(embed_dim)if norm_layer else nn.Identity()
  61. def forward(self, x):
  62. _, _, H, W = x.shape
  63. #padding
  64. # 如果输入图片的H,W不是patch_size的整数倍,需要进行padding
  65. pad_input =(H % self.patch_size[0]!=0)or(W % self.patch_size[1]!=0)if pad_input:#topad the last 3 dimensions,
  66. # (W_left, W_right, H_top,H_bottom, C_front, C_back)
  67. x = F.pad(x,(0, self.patch_size[1]- W % self.patch_size[1], # 表示宽度方向右侧填充数
  68. 0, self.patch_size[0]- H % self.patch_size[0], # 表示高度方向底部填充数
  69. 0,0))
  70. # 下采样patch_size倍
  71. x = self.proj(x)
  72. _, _, H, W = x.shape
  73. #flatten:[B, C, H, W]->[B, C, HW]#transpose:[B, C, HW]->[B, HW, C]
  74. x = x.flatten(2).transpose(1,2)
  75. x = self.norm(x)return x, H, W
  76. class PatchMerging(nn.Module):
  77. r""" Patch Merging Layer.
  78. 步长为2,间隔采样
  79. Args:dim(int): Number of input channels.norm_layer(nn.Module, optional): Normalization layer. Default: nn.LayerNorm
  80. """
  81. def __init__(self, dim, norm_layer=nn.LayerNorm):super().__init__()
  82. self.dim = dim
  83. self.reduction = nn.Linear(4* dim,2* dim, bias=False)
  84. self.norm =norm_layer(4* dim)
  85. def forward(self, x, H, W):"""
  86. x: B, H*W, C 即输入x的通道排列顺序
  87. """
  88. B, L, C = x.shape
  89. assert L == H * W,"input feature has wrong size"
  90. x = x.view(B, H, W, C)#padding
  91. # 如果输入feature map的H,W不是2的整数倍,需要进行padding
  92. pad_input =(H %2==1)or(W %2==1)if pad_input:#topad the last 3 dimensions, starting from the last dimension and moving forward.
  93. # (C_front, C_back, W_left, W_right, H_top, H_bottom)
  94. # 注意这里的Tensor通道是[B, H, W, C],所以会和官方文档有些不同
  95. x = F.pad(x,(0,0,0, W %2,0, H %2))
  96. # 以2为间隔进行采样
  97. x0 = x[:,0::2,0::2,:] # [B, H/2, W/2, C]
  98. x1 = x[:,1::2,0::2,:] # [B, H/2, W/2, C]
  99. x2 = x[:,0::2,1::2,:] # [B, H/2, W/2, C]
  100. x3 = x[:,1::2,1::2,:] # [B, H/2, W/2, C]
  101. x = torch.cat([x0, x1, x2, x3],-1) # ————————>[B, H/2, W/2,4*C] 在channael维度上进行拼接
  102. x = x.view(B,-1,4* C) # [B, H/2*W/2,4*C]
  103. x = self.norm(x)
  104. x = self.reduction(x) # [B, H/2*W/2,2*C]return x
  105. """
  106. MLP模块
  107. """
  108. class Mlp(nn.Module):""" MLP as used in Vision Transformer, MLP-Mixer and related networks
  109. """
  110. def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):super().__init__()
  111. out_features = out_features or in_features
  112. hidden_features = hidden_features or in_features
  113. self.fc1 = nn.Linear(in_features, hidden_features)
  114. self.act =act_layer()
  115. self.drop1 = nn.Dropout(drop)
  116. self.fc2 = nn.Linear(hidden_features, out_features)
  117. self.drop2 = nn.Dropout(drop)
  118. def forward(self, x):
  119. x = self.fc1(x)
  120. x = self.act(x)
  121. x = self.drop1(x)
  122. x = self.fc2(x)
  123. x = self.drop2(x)return x
  124. """
  125. WindowAttention即为:SW-MSA或者W-MSA模块
  126. """
  127. class WindowAttention(nn.Module):
  128. r""" Window based multi-head self attention(W-MSA) module with relative position bias.
  129. It supports both of shifted and non-shifted window.
  130. Args:dim(int): Number of input channels.window_size(tuple[int]): The height and width of the window.num_heads(int): Number of attention heads.qkv_bias(bool, optional): If True, add a learnable bias to query, key, value. Default: True
  131. attn_drop(float, optional): Dropout ratio of attention weight. Default:0.0proj_drop(float, optional): Dropout ratio of output. Default:0.0"""
  132. def __init__(self, dim, window_size, num_heads, qkv_bias=True, attn_drop=0., proj_drop=0.):super().__init__()
  133. self.dim = dim
  134. self.window_size = window_size # [Mh, Mw]
  135. self.num_heads = num_heads
  136. head_dim = dim // num_heads
  137. self.scale = head_dim **-0.5#defineaparameter table of relative position bias
  138. # 创建偏置bias项矩阵
  139. self.relative_position_bias_table = nn.Parameter(
  140. torch.zeros((2* window_size[0]-1)*(2* window_size[1]-1), num_heads)) # [2*Mh-1*2*Mw-1, nH] 其元素的个数===>>[(2*Mh-1)*(2*Mw-1)]#getpair-wise relative position index for each token inside the window
  141. coords_h = torch.arange(self.window_size[0]) # 如果此处的self.window_size[0]为2的话,则生成的coords_h为[0,1]
  142. coords_w = torch.arange(self.window_size[1]) # 同理得
  143. coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # [2, Mh, Mw]
  144. coords_flatten = torch.flatten(coords,1) # [2, Mh*Mw]
  145. # [2, Mh*Mw,1]-[2,1, Mh*Mw]
  146. relative_coords = coords_flatten[:,:, None]- coords_flatten[:, None,:] # [2, Mh*Mw, Mh*Mw]
  147. relative_coords = relative_coords.permute(1,2,0).contiguous() # [Mh*Mw, Mh*Mw,2]
  148. relative_coords[:,:,0]+= self.window_size[0]-1 # shift to start from 0 行标+(M-1)
  149. relative_coords[:,:,1]+= self.window_size[1]-1 # 列表标+(M-1)
  150. relative_coords[:,:,0]*=2* self.window_size[1]-1
  151. relative_position_index = relative_coords.sum(-1) # [Mh*Mw, Mh*Mw]
  152. self.register_buffer("relative_position_index", relative_position_index) # 将relative_position_index放入到模型的缓存当中
  153. self.qkv = nn.Linear(dim, dim *3, bias=qkv_bias)
  154. self.attn_drop = nn.Dropout(attn_drop)
  155. self.proj = nn.Linear(dim, dim)
  156. self.proj_drop = nn.Dropout(proj_drop)
  157. nn.init.trunc_normal_(self.relative_position_bias_table, std=.02)
  158. self.softmax = nn.Softmax(dim=-1)
  159. def forward(self, x, mask: Optional[torch.Tensor]= None):"""
  160. Args:
  161. x: input features with shape of(num_windows*B, Mh*Mw, C)
  162. mask:(0/-inf) mask with shape of(num_windows, Wh*Ww, Wh*Ww) or None
  163. """
  164. # [batch_size*num_windows, Mh*Mw, total_embed_dim]
  165. B_, N, C = x.shape
  166. #qkv():->[batch_size*num_windows, Mh*Mw,3* total_embed_dim]#reshape:->[batch_size*num_windows, Mh*Mw,3, num_heads, embed_dim_per_head]#permute:->[3, batch_size*num_windows, num_heads, Mh*Mw, embed_dim_per_head]
  167. qkv = self.qkv(x).reshape(B_, N,3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
  168. # [batch_size*num_windows, num_heads, Mh*Mw, embed_dim_per_head]
  169. q, k, v = qkv.unbind(0) # make torchscript happy(cannot use tensor as tuple)#transpose:->[batch_size*num_windows, num_heads, embed_dim_per_head, Mh*Mw]
  170. # @: multiply ->[batch_size*num_windows, num_heads, Mh*Mw, Mh*Mw]
  171. q = q * self.scale
  172. attn =(q @ k.transpose(-2,-1))#relative_position_bias_table.view:[Mh*Mw*Mh*Mw,nH]->[Mh*Mw,Mh*Mw,nH]
  173. relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
  174. self.window_size[0]* self.window_size[1], self.window_size[0]* self.window_size[1],-1)
  175. relative_position_bias = relative_position_bias.permute(2,0,1).contiguous() # [nH, Mh*Mw, Mh*Mw]
  176. attn = attn + relative_position_bias.unsqueeze(0)
  177. # 进行mask,相同区域使用0表示;不同区域使用-100表示
  178. if mask is not None:#mask:[nW, Mh*Mw, Mh*Mw]
  179. nW = mask.shape[0] # num_windows
  180. #attn.view:[batch_size, num_windows, num_heads, Mh*Mw, Mh*Mw]#mask.unsqueeze:[1, nW,1, Mh*Mw, Mh*Mw]
  181. attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
  182. attn = attn.view(-1, self.num_heads, N, N)
  183. attn = self.softmax(attn)else:
  184. attn = self.softmax(attn)
  185. attn = self.attn_drop(attn)
  186. # @: multiply ->[batch_size*num_windows, num_heads, Mh*Mw, embed_dim_per_head]#transpose:->[batch_size*num_windows, Mh*Mw, num_heads, embed_dim_per_head]#reshape:->[batch_size*num_windows, Mh*Mw, total_embed_dim]
  187. x =(attn @ v).transpose(1,2).reshape(B_, N, C)
  188. x = self.proj(x)
  189. x = self.proj_drop(x)return x
  190. """
  191. SwinTransformerBlock
  192. """
  193. class SwinTransformerBlock(nn.Module):
  194. r""" Swin Transformer Block.
  195. Args:dim(int): Number of input channels.num_heads(int): Number of attention heads.window_size(int): Window size.shift_size(int): Shift size for SW-MSA.mlp_ratio(float): Ratio of mlp hidden dim to embedding dim.qkv_bias(bool, optional): If True, add a learnable bias to query, key, value. Default: True
  196. drop(float, optional): Dropout rate. Default:0.0attn_drop(float, optional): Attention dropout rate. Default:0.0drop_path(float, optional): Stochastic depth rate. Default:0.0act_layer(nn.Module, optional): Activation layer. Default: nn.GELU
  197. norm_layer(nn.Module, optional): Normalization layer. Default: nn.LayerNorm
  198. """
  199. def __init__(self, dim, num_heads, window_size=7, shift_size=0,
  200. mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., drop_path=0.,
  201. act_layer=nn.GELU, norm_layer=nn.LayerNorm):super().__init__()
  202. self.dim = dim
  203. self.num_heads = num_heads
  204. self.window_size = window_size
  205. self.shift_size = shift_size
  206. self.mlp_ratio = mlp_ratio
  207. assert 0<= self.shift_size < self.window_size,"shift_size must in 0-window_size"
  208. self.norm1 =norm_layer(dim) # 先经过层归一化处理
  209. #WindowAttention即为:SW-MSA或者W-MSA模块
  210. self.attn =WindowAttention(
  211. dim, window_size=(self.window_size, self.window_size), num_heads=num_heads, qkv_bias=qkv_bias,
  212. attn_drop=attn_drop, proj_drop=drop)
  213. self.drop_path =DropPath(drop_path)if drop_path >0.else nn.Identity()
  214. self.norm2 =norm_layer(dim)
  215. mlp_hidden_dim =int(dim * mlp_ratio)
  216. self.mlp =Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
  217. def forward(self, x, attn_mask):
  218. H, W = self.H, self.W
  219. B, L, C = x.shape
  220. assert L == H * W,"input feature has wrong size"
  221. shortcut = x
  222. x = self.norm1(x)
  223. x = x.view(B, H, W, C)#padfeature maps to multiples of window size
  224. # 把feature map给pad到window size的整数倍
  225. pad_l =pad_t=0
  226. pad_r =(self.window_size - W % self.window_size)% self.window_size
  227. pad_b =(self.window_size - H % self.window_size)% self.window_size
  228. x = F.pad(x,(0,0, pad_l, pad_r,pad_t, pad_b))
  229. _, Hp, Wp, _ = x.shape
  230. #cyclicshift
  231. # 判断是进行SW-MSA或者是W-MSA模块
  232. if self.shift_size >0:#https://blog.csdn.net/ooooocj/article/details/126046858?ops_request_misc=&request_id=&biz_id=102&utm_term=torch.roll()%E7%94%A8%E6%B3%95&utm_medium=distribute.pc_search_result.none-task-blog-2~all~sobaiduweb~default-0-126046858.142^v73^control,201^v4^add_ask,239^v1^control&spm=1018.2226.3001.4187
  233. shifted_x = torch.roll(x, shifts=(-self.shift_size,-self.shift_size), dims=(1,2)) #进行数据移动操作
  234. else:
  235. shifted_x = x
  236. attn_mask = None
  237. #partitionwindows
  238. # 将窗口按照window_size的大小进行划分,得到一个个窗口
  239. x_windows =window_partition(shifted_x, self.window_size) # [nW*B, Mh, Mw, C]
  240. # 将数据进行展平操作
  241. x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # [nW*B, Mh*Mw, C]#W-MSA/SW-MSA"""
  242. # 进行多头自注意力机制操作
  243. """
  244. attn_windows = self.attn(x_windows, mask=attn_mask) # [nW*B, Mh*Mw, C]#mergewindows
  245. attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) # [nW*B, Mh, Mw, C]
  246. # 将多窗口拼接回大的featureMap
  247. shifted_x =window_reverse(attn_windows, self.window_size, Hp, Wp) # [B, H', W', C]#reversecyclic shift
  248. # 将移位的数据进行还原
  249. if self.shift_size >0:
  250. x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1,2))else:
  251. x = shifted_x
  252. # 如果进行了padding操作,需要移出掉相应的pad
  253. if pad_r >0 or pad_b >0:
  254. # 把前面pad的数据移除掉
  255. x = x[:,:H,:W,:].contiguous()
  256. x = x.view(B, H * W, C)#FFN
  257. x = shortcut + self.drop_path(x)
  258. x = x + self.drop_path(self.mlp(self.norm2(x)))return x
  259. class BasicLayer(nn.Module):"""
  260. A basic Swin Transformer layer for one stage.
  261. Args:dim(int): Number of input channels.depth(int): Number of blocks.num_heads(int): Number of attention heads.window_size(int): Local window size.mlp_ratio(float): Ratio of mlp hidden dim to embedding dim.qkv_bias(bool, optional): If True, add a learnable bias to query, key, value. Default: True
  262. drop(float, optional): Dropout rate. Default:0.0attn_drop(float, optional): Attention dropout rate. Default:0.0drop_path(float| tuple[float], optional): Stochastic depth rate. Default:0.0norm_layer(nn.Module, optional): Normalization layer. Default: nn.LayerNorm
  263. downsample(nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
  264. use_checkpoint(bool): Whether to use checkpointing to save memory. Default: False."""
  265. def __init__(self, dim, depth, num_heads, window_size,
  266. mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0.,
  267. drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False):super().__init__()
  268. self.dim = dim
  269. self.depth = depth
  270. self.window_size = window_size
  271. self.use_checkpoint = use_checkpoint
  272. self.shift_size = window_size // 2 # 表示向右和向下偏移的窗口大小 即窗口大小除以2,然后向下取整#buildblocks
  273. self.blocks = nn.ModuleList([SwinTransformerBlock(
  274. dim=dim,
  275. num_heads=num_heads,
  276. window_size=window_size,
  277. shift_size=0if(i %2==0)else self.shift_size, # 通过判断shift_size是否等于0,来决定是使用W-MSA与SW-MSA
  278. mlp_ratio=mlp_ratio,
  279. qkv_bias=qkv_bias,
  280. drop=drop,
  281. attn_drop=attn_drop,
  282. drop_path=drop_path[i]ifisinstance(drop_path, list)else drop_path,
  283. norm_layer=norm_layer)for i in range(depth)])#patchmerging layer 即:PatchMerging类if downsample is not None:
  284. self.downsample =downsample(dim=dim, norm_layer=norm_layer)else:
  285. self.downsample = None
  286. def create_mask(self, x, H, W):#calculateattention mask for SW-MSA
  287. # 保证Hp和Wp是window_size的整数倍
  288. Hp =int(np.ceil(H / self.window_size))* self.window_size
  289. Wp =int(np.ceil(W / self.window_size))* self.window_size
  290. # 拥有和feature map一样的通道排列顺序,方便后续window_partition
  291. img_mask = torch.zeros((1, Hp, Wp,1), device=x.device) # [1, Hp, Wp,1]
  292. h_slices =(slice(0,-self.window_size),slice(-self.window_size,-self.shift_size),slice(-self.shift_size, None))
  293. w_slices =(slice(0,-self.window_size),slice(-self.window_size,-self.shift_size),slice(-self.shift_size, None))
  294. cnt =0for h in h_slices:for w in w_slices:
  295. img_mask[:, h, w,:]= cnt
  296. cnt +=1
  297. # 将img_mask划分成一个一个窗口
  298. mask_windows =window_partition(img_mask, self.window_size) # [nW, Mh, Mw,1] # 输出的是按照指定的window_size划分成一个一个窗口的数据
  299. mask_windows = mask_windows.view(-1, self.window_size * self.window_size) # [nW, Mh*Mw]
  300. attn_mask = mask_windows.unsqueeze(1)- mask_windows.unsqueeze(2) # [nW,1, Mh*Mw]-[nW, Mh*Mw,1] 使用了广播机制
  301. # [nW, Mh*Mw, Mh*Mw]
  302. # 因为需要求得的是自身注意力机制,所以,所以相同的区域使用0表示,;不同的区域不等于0,填入-100,这样,在求得
  303. attn_mask = attn_mask.masked_fill(attn_mask !=0,float(-100.0)).masked_fill(attn_mask ==0,float(0.0)) # 即对于不等于0的位置,赋值为-100;否则为0return attn_mask
  304. def forward(self, x, H, W):
  305. attn_mask = self.create_mask(x, H, W) # [nW, Mh*Mw, Mh*Mw] # 制作mask蒙版
  306. for blk in self.blocks:
  307. blk.H, blk.W = H, W
  308. if not torch.jit.is_scripting() and self.use_checkpoint:
  309. x = checkpoint.checkpoint(blk, x, attn_mask)else:
  310. x =blk(x, attn_mask)if self.downsample is not None:
  311. x = self.downsample(x, H, W)
  312. H, W =(H +1)// 2, (W + 1) // 2return x, H, W
  313. class SwinTransformer(nn.Module):
  314. r""" Swin Transformer
  315. A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` -
  316. https://arxiv.org/pdf/2103.14030
  317. Args:patch_size(int|tuple(int)): Patch size. Default:4 表示通过Patch Partition层后,下采样几倍
  318. in_chans(int): Number of input image channels. Default:3num_classes(int): Number of classes for classification head. Default:1000embed_dim(int): Patch embedding dimension. Default:96depths(tuple(int)): Depth of each Swin Transformer layer.num_heads(tuple(int)): Number of attention heads in different layers.window_size(int): Window size. Default:7mlp_ratio(float): Ratio of mlp hidden dim to embedding dim. Default:4qkv_bias(bool): If True, add a learnable bias to query, key, value. Default: True
  319. drop_rate(float): Dropout rate. Default:0attn_drop_rate(float): Attention dropout rate. Default:0drop_path_rate(float): Stochastic depth rate. Default:0.1norm_layer(nn.Module): Normalization layer. Default: nn.LayerNorm.patch_norm(bool): If True, add normalization after patch embedding. Default: True
  320. use_checkpoint(bool): Whether to use checkpointing to save memory. Default: False
  321. """
  322. def __init__(self, patch_size=4, # 表示通过Patch Partition层后,下采样几倍
  323. in_chans=3, # 输入图像通道
  324. num_classes=1000, # 类别数
  325. embed_dim=96, # Patch partition层后的LinearEmbedding层映射后的维度,之后的几层都是该数的整数倍 分别是 C、2C、4C、8C
  326. depths=(2,2,6,2), # 表示每一个Stage模块内,Swin Transformer Block重复的次数
  327. num_heads=(3,6,12,24), # 表示每一个Stage模块内,Swin Transformer Block中采用的Multi-Head self-Attention的head的个数
  328. window_size=7, # 表示W-MSA与SW-MSA所采用的window的大小
  329. mlp_ratio=4., # 表示MLP模块中,第一个全连接层增大的倍数
  330. qkv_bias=True,
  331. drop_rate=0., # 对应的PatchEmbed层后面的
  332. attn_drop_rate=0., # 对应于Multi-Head self-Attention模块中对应的dropRate
  333. drop_path_rate=0.1, # 对应于每一个Swin-Transformer模块中采用的DropRate 其是慢慢的递增的,从0增长到drop_path_rate
  334. norm_layer=nn.LayerNorm,
  335. patch_norm=True,
  336. use_checkpoint=False,**kwargs):super().__init__()
  337. self.num_classes = num_classes
  338. self.num_layers =len(depths) # depths:表示重复的Swin Transoformer Block模块的次数 表示每一个Stage模块内,Swin Transformer Block重复的次数
  339. self.embed_dim = embed_dim
  340. self.patch_norm = patch_norm
  341. #stage4输出特征矩阵的channels
  342. self.num_features =int(embed_dim *2**(self.num_layers -1))
  343. self.mlp_ratio = mlp_ratio
  344. #splitimage into non-overlapping patches 即将图片划分成一个个没有重叠的patch
  345. self.patch_embed =PatchEmbed(
  346. patch_size=patch_size, in_c=in_chans, embed_dim=embed_dim,
  347. norm_layer=norm_layer if self.patch_norm else None)
  348. self.pos_drop = nn.Dropout(p=drop_rate) # PatchEmbed层后面的Dropout层
  349. #stochasticdepth
  350. dpr =[x.item()for x in torch.linspace(0, drop_path_rate,sum(depths))] # stochastic depth decay rule
  351. #buildlayers
  352. self.layers = nn.ModuleList()for i_layer in range(self.num_layers):
  353. # 注意这里构建的stage和论文图中有些差异
  354. # 这里的stage不包含该stage的patch_merging层,包含的是下个stage的
  355. layers =BasicLayer(dim=int(embed_dim *2** i_layer), # 传入特征矩阵的维度,即channel方向的深度
  356. depth=depths[i_layer], # 表示当前stage中需要堆叠的多少Swin Transformer Block
  357. num_heads=num_heads[i_layer], # 表示每一个Stage模块内,Swin Transformer Block中采用的Multi-Head self-Attention的head的个数
  358. window_size=window_size, # 表示W-MSA与SW-MSA所采用的window的大小
  359. mlp_ratio=self.mlp_ratio, # 表示MLP模块中,第一个全连接层增大的倍数
  360. qkv_bias=qkv_bias,
  361. drop=drop_rate, # 对应的PatchEmbed层后面的
  362. attn_drop=attn_drop_rate, # 对应于Multi-Head self-Attention模块中对应的dropRate
  363. drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer +1])], # 对应于每一个Swin-Transformer模块中采用的DropRate 其是慢慢的递增的,从0增长到drop_path_rate
  364. norm_layer=norm_layer,
  365. downsample=PatchMerging if(i_layer < self.num_layers -1)else None, # 判断是否是第四个,因为第四个Stage是没有PatchMerging层的
  366. use_checkpoint=use_checkpoint)
  367. self.layers.append(layers)
  368. self.norm =norm_layer(self.num_features)
  369. self.avgpool = nn.AdaptiveAvgPool1d(1) # 自适应的全局平均池化
  370. self.head = nn.Linear(self.num_features, num_classes)if num_classes >0else nn.Identity()
  371. self.apply(self._init_weights)
  372. def _init_weights(self, m):ifisinstance(m, nn.Linear):
  373. nn.init.trunc_normal_(m.weight, std=.02)ifisinstance(m, nn.Linear) and m.bias is not None:
  374. nn.init.constant_(m.bias,0)
  375. elif isinstance(m, nn.LayerNorm):
  376. nn.init.constant_(m.bias,0)
  377. nn.init.constant_(m.weight,1.0)
  378. def forward(self, x):#x:[B, L, C]
  379. x, H, W = self.patch_embed(x) # 对图像下采样4倍
  380. x = self.pos_drop(x)
  381. # 依次传入各个stage中
  382. for layer in self.layers:
  383. x, H, W =layer(x, H, W)
  384. x = self.norm(x) # [B, L, C]
  385. x = self.avgpool(x.transpose(1,2)) # [B, C,1]
  386. x = torch.flatten(x,1)
  387. x = self.head(x) # 经过全连接层,得到输出
  388. return x
  389. def swin_tiny_patch4_window7_224(num_classes:int=1000,**kwargs):#trainedImageNet-1K#https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_tiny_patch4_window7_224.pth
  390. model =SwinTransformer(in_chans=3,
  391. patch_size=4,
  392. window_size=7,
  393. embed_dim=96,
  394. depths=(2,2,6,2),
  395. num_heads=(3,6,12,24),
  396. num_classes=num_classes,**kwargs)return model
  397. def swin_small_patch4_window7_224(num_classes:int=1000,**kwargs):#trainedImageNet-1K#https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_small_patch4_window7_224.pth
  398. model =SwinTransformer(in_chans=3,
  399. patch_size=4,
  400. window_size=7,
  401. embed_dim=96,
  402. depths=(2,2,18,2),
  403. num_heads=(3,6,12,24),
  404. num_classes=num_classes,**kwargs)return model
  405. def swin_base_patch4_window7_224(num_classes:int=1000,**kwargs):#trainedImageNet-1K#https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window7_224.pth
  406. model =SwinTransformer(in_chans=3,
  407. patch_size=4,
  408. window_size=7,
  409. embed_dim=128,
  410. depths=(2,2,18,2),
  411. num_heads=(4,8,16,32),
  412. num_classes=num_classes,**kwargs)return model
  413. def swin_base_patch4_window12_384(num_classes:int=1000,**kwargs):#trainedImageNet-1K#https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window12_384.pth
  414. model =SwinTransformer(in_chans=3,
  415. patch_size=4,
  416. window_size=12,
  417. embed_dim=128,
  418. depths=(2,2,18,2),
  419. num_heads=(4,8,16,32),
  420. num_classes=num_classes,**kwargs)return model
  421. def swin_base_patch4_window7_224_in22k(num_classes:int=21841,**kwargs):#trainedImageNet-22K#https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window7_224_22k.pth
  422. model =SwinTransformer(in_chans=3,
  423. patch_size=4,
  424. window_size=7,
  425. embed_dim=128,
  426. depths=(2,2,18,2),
  427. num_heads=(4,8,16,32),
  428. num_classes=num_classes,**kwargs)return model
  429. def swin_base_patch4_window12_384_in22k(num_classes:int=21841,**kwargs):#trainedImageNet-22K#https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window12_384_22k.pth
  430. model =SwinTransformer(in_chans=3,
  431. patch_size=4,
  432. window_size=12,
  433. embed_dim=128,
  434. depths=(2,2,18,2),
  435. num_heads=(4,8,16,32),
  436. num_classes=num_classes,**kwargs)return model
  437. def swin_large_patch4_window7_224_in22k(num_classes:int=21841,**kwargs):#trainedImageNet-22K#https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window7_224_22k.pth
  438. model =SwinTransformer(in_chans=3,
  439. patch_size=4,
  440. window_size=7,
  441. embed_dim=192,
  442. depths=(2,2,18,2),
  443. num_heads=(6,12,24,48),
  444. num_classes=num_classes,**kwargs)return model
  445. def swin_large_patch4_window12_384_in22k(num_classes:int=21841,**kwargs):#trainedImageNet-22K#https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window12_384_22k.pth
  446. model =SwinTransformer(in_chans=3,
  447. patch_size=4,
  448. window_size=12,
  449. embed_dim=192,
  450. depths=(2,2,18,2),
  451. num_heads=(6,12,24,48),
  452. num_classes=num_classes,**kwargs)return model

本文转载自: https://blog.csdn.net/guoqingru0311/article/details/128963854
版权归原作者 郭庆汝 所有, 如有侵权,请联系我们删除。

“深度学习网络模型————Swin-Transformer详细讲解与代码实现”的评论:

还没有评论