0


基于yolov5s+bifpn实践隧道裂缝裂痕检测

yolov5系列自诞生已经持续迭代了很多个版本了,目前官方开发者迭代的最新版本是v6.2,已经覆盖了分类、检测盒分割三大主流CV任务了,基于yolov5融合各种tricks是很多开发者或者是学生喜欢做的事情,基于yolov5也已经诞生了很多学术文章了,bifpn是一种比较有效的特征融合技术,最早在efficientnet中提出,之后很多网络也都有尝试进行融合,今天正好有时间就想着,基于yolov5来开发融合bifpn的目标检测模型,用于隧道内的裂缝裂痕检测。

首先看下最终的效果图,如下所示:

为了整体直观,这里专门是开发了对应的界面,方便使用的。

完整项目截图如下所示:

下表是对整个项目中各个文件的介绍说明:
文件名称文件说明dataset/数据集目录models/模型配置目录runs/模型结果目录utils/公共组件目录data/数据参数目录weights/预训练权重目录app.gifapp效果动图demo.gif检测样例动图detect.py检测推理模块export.py模型转化模块guiAPP.pyAPP模块inference.py离线推理精简模块logs.out训练日志startAPP.bat双击启动APP脚本test.jpg测试样例图片train.py训练模块val.py评估模块yolov5s.onnxyolov5s原生模型yolov5s.ptyolov5s原生模型yolov5s-bifpn.onnxyolov5s-bifpn模型yolov5s-bifpn.ptyolov5s-bifpn模型
data目录如下所示:

logo是用于界面的这个不用管,可以根据自己需要直接替换接口,self.yaml是我们编写的用于训练的数据配置,如下:

其他的都是项目自带的这里就不再介绍了。

dataset是我们构建的训练集-测试集目录。数据样例如下所示:

models目录如下所示:

yolov5s.yaml和yolov5s_bifpn.yaml分别表示原生的yolov5s模型和融合bifpn的yolov5s模型,这里以原生的yolov5s为例,如下:

这里需要修改nc。

runs是项目运行自动创建的结果存储目录。

utils是项目公用组件目录。

weights是用于存放预训练权重的目录。

启动train.py模块即可执行模型的训练计算,日志输出如下:

  1. Starting training for 100 epochs...
  2. Epoch gpu_mem box obj cls labels img_size
  3. 0%| | 0/59 [00:00<?, ?it/s]
  4. 0/99 6.29G 0.122 0.0985 0 611 640: 0%| | 0/59 [00:03<?, ?it/s]
  5. 0/99 6.29G 0.122 0.0985 0 611 640: 2%|▏ | 1/59 [00:05<05:28, 5.67s/it]
  6. 0/99 6.35G 0.1225 0.1005 0 699 640: 2%|▏ | 1/59 [00:09<05:28, 5.67s/it]
  7. 0/99 6.35G 0.1225 0.1005 0 699 640: 3%|▎ | 2/59 [00:09<04:08, 4.36s/it]
  8. 0/99 6.35G 0.1221 0.1014 0 655 640: 3%|▎ | 2/59 [00:12<04:08, 4.36s/it]
  9. 0/99 6.35G 0.1221 0.1014 0 655 640: 5%|▌ | 3/59 [00:12<03:39, 3.92s/it]
  10. 0/99 6.35G 0.1219 0.1022 0 671 640: 5%|▌ | 3/59 [00:15<03:39, 3.92s/it]
  11. 0/99 6.35G 0.1219 0.1022 0 671 640: 7%|▋ | 4/59 [00:15<03:24, 3.72s/it]
  12. 0/99 6.35G 0.1216 0.1006 0 573 640: 7%|▋ | 4/59 [00:19<03:24, 3.72s/it]
  13. 0/99 6.35G 0.1216 0.1006 0 573 640: 8%|▊ | 5/59 [00:19<03:18, 3.68s/it]
  14. 0/99 6.35G 0.1216 0.1013 0 676 640: 8%|▊ | 5/59 [00:23<03:18, 3.68s/it]
  15. 0/99 6.35G 0.1216 0.1013 0 676 640: 10%|█ | 6/59 [00:23<03:15, 3.69s/it]
  16. 0/99 6.35G 0.1215 0.1015 0 688 640: 10%|█ | 6/59 [00:26<03:15, 3.69s/it]
  17. 0/99 6.35G 0.1215 0.1015 0 688 640: 12%|█▏ | 7/59 [00:26<03:07, 3.61s/it]
  18. 0/99 6.35G 0.1213 0.1026 0 710 640: 12%|█▏ | 7/59 [00:29<03:07, 3.61s/it]
  19. 0/99 6.35G 0.1213 0.1026 0 710 640: 14%|█▎ | 8/59 [00:29<02:59, 3.51s/it]
  20. 0/99 6.35G 0.121 0.1038 0 701 640: 14%|█▎ | 8/59 [00:33<02:59, 3.51s/it]
  21. 0/99 6.35G 0.121 0.1038 0 701 640: 15%|█▌ | 9/59 [00:33<02:52, 3.45s/it]
  22. 0/99 6.35G 0.1208 0.1039 0 624 640: 15%|█▌ | 9/59 [00:36<02:52, 3.45s/it]
  23. 0/99 6.35G 0.1208 0.1039 0 624 640: 17%|█▋ | 10/59 [00:36<02:46, 3.40s/it]
  24. 0/99 6.35G 0.1207 0.1047 0 812 640: 17%|█▋ | 10/59 [00:40<02:46, 3.40s/it]
  25. 0/99 6.35G 0.1207 0.1047 0 812 640: 19%|█▊ | 11/59 [00:40<02:45, 3.44s/it]
  26. 0/99 6.35G 0.1203 0.1041 0 537 640: 19%|█▊ | 11/59 [00:43<02:45, 3.44s/it]
  27. 0/99 6.35G 0.1203 0.1041 0 537 640: 20%|██ | 12/59 [00:43<02:41, 3.44s/it]
  28. 0/99 6.35G 0.1197 0.1042 0 537 640: 20%|██ | 12/59 [00:46<02:41, 3.44s/it]
  29. 0/99 6.35G 0.1197 0.1042 0 537 640: 22%|██▏ | 13/59 [00:46<02:36, 3.41s/it]
  30. 0/99 6.35G 0.1193 0.1054 0 650 640: 22%|██▏ | 13/59 [00:50<02:36, 3.41s/it]
  31. 0/99 6.35G 0.1193 0.1054 0 650 640: 24%|██▎ | 14/59 [00:50<02:32, 3.38s/it]
  32. 0/99 6.35G 0.1189 0.105 0 549 640: 24%|██▎ | 14/59 [00:53<02:32, 3.38s/it]
  33. 0/99 6.35G 0.1189 0.105 0 549 640: 25%|██▌ | 15/59 [00:53<02:31, 3.44s/it]
  34. 0/99 6.35G 0.1189 0.1053 0 767 640: 25%|██▌ | 15/59 [00:57<02:31, 3.44s/it]
  35. 0/99 6.35G 0.1189 0.1053 0 767 640: 27%|██▋ | 16/59 [00:57<02:30, 3.51s/it]
  36. 0/99 6.35G 0.1185 0.1055 0 634 640: 27%|██▋ | 16/59 [01:00<02:30, 3.51s/it]
  37. 0/99 6.35G 0.1185 0.1055 0 634 640: 29%|██▉ | 17/59 [01:00<02:26, 3.48s/it]
  38. 0/99 6.35G 0.1181 0.1054 0 597 640: 29%|██▉ | 17/59 [01:04<02:26, 3.48s/it]
  39. 0/99 6.35G 0.1181 0.1054 0 597 640: 31%|███ | 18/59 [01:04<02:20, 3.43s/it]
  40. 0/99 6.35G 0.1179 0.1065 0 794 640: 31%|███ | 18/59 [01:07<02:20, 3.43s/it]
  41. 0/99 6.35G 0.1179 0.1065 0 794 640: 32%|███▏ | 19/59 [01:07<02:16, 3.40s/it]
  42. 0/99 6.35G 0.1175 0.1059 0 545 640: 32%|███▏ | 19/59 [01:10<02:16, 3.40s/it]
  43. 0/99 6.35G 0.1175 0.1059 0 545 640: 34%|███▍ | 20/59 [01:10<02:11, 3.38s/it]
  44. 0/99 6.35G 0.1171 0.1052 0 522 640: 34%|███▍ | 20/59 [01:14<02:11, 3.38s/it]
  45. 0/99 6.35G 0.1171 0.1052 0 522 640: 36%|███▌ | 21/59 [01:14<02:07, 3.35s/it]
  46. 0/99 6.35G 0.1167 0.1047 0 505 640: 36%|███▌ | 21/59 [01:17<02:07, 3.35s/it]
  47. 0/99 6.35G 0.1167 0.1047 0 505 640: 37%|███▋ | 22/59 [01:17<02:05, 3.38s/it]
  48. 0/99 6.35G 0.1164 0.1052 0 697 640: 37%|███▋ | 22/59 [01:21<02:05, 3.38s/it]
  49. 0/99 6.35G 0.1164 0.1052 0 697 640: 39%|███▉ | 23/59 [01:21<02:04, 3.47s/it]
  50. 0/99 6.35G 0.1161 0.1057 0 765 640: 39%|███▉ | 23/59 [01:24<02:04, 3.47s/it]
  51. 0/99 6.35G 0.1161 0.1057 0 765 640: 41%|████ | 24/59 [01:24<02:02, 3.50s/it]
  52. 0/99 6.35G 0.1158 0.1062 0 722 640: 41%|████ | 24/59 [01:28<02:02, 3.50s/it]
  53. 0/99 6.35G 0.1158 0.1062 0 722 640: 42%|████▏ | 25/59 [01:28<01:56, 3.43s/it]
  54. 0/99 6.35G 0.1155 0.1062 0 653 640: 42%|████▏ | 25/59 [01:31<01:56, 3.43s/it]
  55. 0/99 6.35G 0.1155 0.1062 0 653 640: 44%|████▍ | 26/59 [01:31<01:52, 3.40s/it]
  56. 0/99 6.35G 0.1152 0.1061 0 693 640: 44%|████▍ | 26/59 [01:34<01:52, 3.40s/it]
  57. 0/99 6.35G 0.1152 0.1061 0 693 640: 46%|████▌ | 27/59 [01:34<01:47, 3.37s/it]
  58. 0/99 6.35G 0.1149 0.1056 0 629 640: 46%|████▌ | 27/59 [01:38<01:47, 3.37s/it]
  59. 0/99 6.35G 0.1149 0.1056 0 629 640: 47%|████▋ | 28/59 [01:38<01:43, 3.35s/it]
  60. 0/99 6.35G 0.1146 0.105 0 603 640: 47%|████▋ | 28/59 [01:41<01:43, 3.35s/it]
  61. 0/99 6.35G 0.1146 0.105 0 603 640: 49%|████▉ | 29/59 [01:41<01:40, 3.35s/it]
  62. 0/99 6.35G 0.1141 0.1045 0 521 640: 49%|████▉ | 29/59 [01:44<01:40, 3.35s/it]
  63. 0/99 6.35G 0.1141 0.1045 0 521 640: 51%|█████ | 30/59 [01:44<01:39, 3.42s/it]
  64. 0/99 6.35G 0.1138 0.1047 0 748 640: 51%|█████ | 30/59 [01:49<01:39, 3.42s/it]
  65. 0/99 6.35G 0.1138 0.1047 0 748 640: 53%|█████▎ | 31/59 [01:49<01:40, 3.60s/it]
  66. 0/99 6.35G 0.1134 0.1044 0 581 640: 53%|█████▎ | 31/59 [01:52<01:40, 3.60s/it]
  67. 0/99 6.35G 0.1134 0.1044 0 581 640: 54%|█████▍ | 32/59 [01:52<01:34, 3.51s/it]
  68. 0/99 6.35G 0.113 0.1041 0 579 640: 54%|█████▍ | 32/59 [01:55<01:34, 3.51s/it]
  69. 0/99 6.35G 0.113 0.1041 0 579 640: 56%|█████▌ | 33/59 [01:55<01:29, 3.44s/it]
  70. 0/99 6.35G 0.1126 0.1042 0 720 640: 56%|█████▌ | 33/59 [01:58<01:29, 3.44s/it]
  71. 0/99 6.35G 0.1126 0.1042 0 720 640: 58%|█████▊ | 34/59 [01:58<01:24, 3.39s/it]
  72. 0/99 6.35G 0.1122 0.1039 0 603 640: 58%|█████▊ | 34/59 [02:02<01:24, 3.39s/it]
  73. 0/99 6.35G 0.1122 0.1039 0 603 640: 59%|█████▉ | 35/59 [02:02<01:20, 3.36s/it]
  74. 0/99 6.35G 0.1119 0.1037 0 702 640: 59%|█████▉ | 35/59 [02:05<01:20, 3.36s/it]
  75. 0/99 6.35G 0.1119 0.1037 0 702 640: 61%|██████ | 36/59 [02:05<01:18, 3.41s/it]
  76. 0/99 6.35G 0.1115 0.1036 0 616 640: 61%|██████ | 36/59 [02:09<01:18, 3.41s/it]
  77. 0/99 6.35G 0.1115 0.1036 0 616 640: 63%|██████▎ | 37/59 [02:09<01:16, 3.50s/it]
  78. 0/99 6.35G 0.1111 0.1034 0 655 640: 63%|██████▎ | 37/59 [02:12<01:16, 3.50s/it]
  79. 0/99 6.35G 0.1111 0.1034 0 655 640: 64%|██████▍ | 38/59 [02:12<01:13, 3.49s/it]
  80. 0/99 6.35G 0.1107 0.1036 0 728 640: 64%|██████▍ | 38/59 [02:16<01:13, 3.49s/it]
  81. 0/99 6.35G 0.1107 0.1036 0 728 640: 66%|██████▌ | 39/59 [02:16<01:08, 3.44s/it]
  82. 0/99 6.35G 0.1103 0.1038 0 801 640: 66%|██████▌ | 39/59 [02:19<01:08, 3.44s/it]
  83. 0/99 6.35G 0.1103 0.1038 0 801 640: 68%|██████▊ | 40/59 [02:19<01:04, 3.40s/it]
  84. 0/99 6.35G 0.11 0.1038 0 723 640: 68%|██████▊ | 40/59 [02:22<01:04, 3.40s/it]
  85. 0/99 6.35G 0.11 0.1038 0 723 640: 69%|██████▉ | 41/59 [02:22<01:00, 3.37s/it]
  86. 0/99 6.35G 0.1096 0.1034 0 555 640: 69%|██████▉ | 41/59 [02:26<01:00, 3.37s/it]
  87. 0/99 6.35G 0.1096 0.1034 0 555 640: 71%|███████ | 42/59 [02:26<00:57, 3.36s/it]
  88. 0/99 6.35G 0.1093 0.1034 0 642 640: 71%|███████ | 42/59 [02:29<00:57, 3.36s/it]
  89. 0/99 6.35G 0.1093 0.1034 0 642 640: 73%|███████▎ | 43/59 [02:29<00:54, 3.43s/it]
  90. 0/99 6.35G 0.1089 0.1032 0 632 640: 73%|███████▎ | 43/59 [02:33<00:54, 3.43s/it]
  91. 0/99 6.35G 0.1089 0.1032 0 632 640: 75%|███████▍ | 44/59 [02:33<00:52, 3.47s/it]
  92. 0/99 6.35G 0.1085 0.103 0 544 640: 75%|███████▍ | 44/59 [02:36<00:52, 3.47s/it]
  93. 0/99 6.35G 0.1085 0.103 0 544 640: 76%|███████▋ | 45/59 [02:36<00:47, 3.41s/it]
  94. 0/99 6.35G 0.1081 0.1025 0 485 640: 76%|███████▋ | 45/59 [02:39<00:47, 3.41s/it]
  95. 0/99 6.35G 0.1081 0.1025 0 485 640: 78%|███████▊ | 46/59 [02:39<00:43, 3.38s/it]
  96. 0/99 6.35G 0.1077 0.1023 0 600 640: 78%|███████▊ | 46/59 [02:43<00:43, 3.38s/it]
  97. 0/99 6.35G 0.1077 0.1023 0 600 640: 80%|███████▉ | 47/59 [02:43<00:40, 3.35s/it]
  98. 0/99 6.35G 0.1073 0.102 0 513 640: 80%|███████▉ | 47/59 [02:46<00:40, 3.35s/it]
  99. 0/99 6.35G 0.1073 0.102 0 513 640: 81%|████████▏ | 48/59 [02:46<00:36, 3.34s/it]
  100. 0/99 6.35G 0.1069 0.1019 0 522 640: 81%|████████▏ | 48/59 [02:49<00:36, 3.34s/it]
  101. 0/99 6.35G 0.1069 0.1019 0 522 640: 83%|████████▎ | 49/59 [02:49<00:33, 3.35s/it]
  102. 0/99 6.35G 0.1065 0.102 0 687 640: 83%|████████▎ | 49/59 [02:53<00:33, 3.35s/it]
  103. 0/99 6.35G 0.1065 0.102 0 687 640: 85%|████████▍ | 50/59 [02:53<00:30, 3.43s/it]
  104. 0/99 6.35G 0.1061 0.1018 0 541 640: 85%|████████▍ | 50/59 [02:57<00:30, 3.43s/it]
  105. 0/99 6.35G 0.1061 0.1018 0 541 640: 86%|████████▋ | 51/59 [02:57<00:28, 3.52s/it]
  106. 0/99 6.35G 0.1058 0.1017 0 615 640: 86%|████████▋ | 51/59 [03:00<00:28, 3.52s/it]
  107. 0/99 6.35G 0.1058 0.1017 0 615 640: 88%|████████▊ | 52/59 [03:00<00:24, 3.49s/it]
  108. 0/99 6.35G 0.1055 0.1018 0 781 640: 88%|████████▊ | 52/59 [03:03<00:24, 3.49s/it]
  109. 0/99 6.35G 0.1055 0.1018 0 781 640: 90%|████████▉ | 53/59 [03:03<00:20, 3.44s/it]
  110. 0/99 6.35G 0.1052 0.1017 0 586 640: 90%|████████▉ | 53/59 [03:07<00:20, 3.44s/it]
  111. 0/99 6.35G 0.1052 0.1017 0 586 640: 92%|█████████▏| 54/59 [03:07<00:16, 3.39s/it]
  112. 0/99 6.35G 0.1049 0.1016 0 575 640: 92%|█████████▏| 54/59 [03:10<00:16, 3.39s/it]
  113. 0/99 6.35G 0.1049 0.1016 0 575 640: 93%|█████████▎| 55/59 [03:10<00:13, 3.36s/it]
  114. 0/99 6.35G 0.1046 0.1019 0 715 640: 93%|█████████▎| 55/59 [03:13<00:13, 3.36s/it]
  115. 0/99 6.35G 0.1046 0.1019 0 715 640: 95%|█████████▍| 56/59 [03:13<00:10, 3.36s/it]
  116. 0/99 6.35G 0.1042 0.1019 0 618 640: 95%|█████████▍| 56/59 [03:17<00:10, 3.36s/it]
  117. 0/99 6.35G 0.1042 0.1019 0 618 640: 97%|█████████▋| 57/59 [03:17<00:06, 3.45s/it]
  118. 0/99 6.35G 0.1039 0.1017 0 544 640: 97%|█████████▋| 57/59 [03:21<00:06, 3.45s/it]
  119. 0/99 6.35G 0.1039 0.1017 0 544 640: 98%|█████████▊| 58/59 [03:21<00:03, 3.49s/it]
  120. 0/99 6.35G 0.1036 0.1016 0 96 640: 98%|█████████▊| 58/59 [03:21<00:03, 3.49s/it]
  121. 0/99 6.35G 0.1036 0.1016 0 96 640: 100%|██████████| 59/59 [03:21<00:00, 2.61s/it]
  122. 0/99 6.35G 0.1036 0.1016 0 96 640: 100%|██████████| 59/59 [03:21<00:00, 3.42s/it]
  123. Class Images Labels P R mAP@.5 mAP@.5:.95: 0%| | 0/4 [00:00<?, ?it/s]
  124. Class Images Labels P R mAP@.5 mAP@.5:.95: 25%|██▌ | 1/4 [00:02<00:07, 2.63s/it]
  125. Class Images Labels P R mAP@.5 mAP@.5:.95: 50%|█████ | 2/4 [00:05<00:05, 2.75s/it]
  126. Class Images Labels P R mAP@.5 mAP@.5:.95: 75%|███████▌ | 3/4 [00:07<00:02, 2.61s/it]
  127. Class Images Labels P R mAP@.5 mAP@.5:.95: 100%|██████████| 4/4 [00:08<00:00, 1.95s/it]
  128. Class Images Labels P R mAP@.5 mAP@.5:.95: 100%|██████████| 4/4 [00:08<00:00, 2.21s/it]
  129. all 207 3407 0.115 0.277 0.0747 0.0141
  130. Epoch gpu_mem box obj cls labels img_size
  131. 0%| | 0/59 [00:00<?, ?it/s]
  132. 1/99 6.35G 0.08355 0.09766 0 566 640: 0%| | 0/59 [00:03<?, ?it/s]
  133. 1/99 6.35G 0.08355 0.09766 0 566 640: 2%|▏ | 1/59 [00:03<03:26, 3.56s/it]
  134. 1/99 6.35G 0.08539 0.09904 0 652 640: 2%|▏ | 1/59 [00:07<03:26, 3.56s/it]
  135. 1/99 6.35G 0.08539 0.09904 0 652 640: 3%|▎ | 2/59 [00:07<03:27, 3.65s/it]
  136. 1/99 6.35G 0.08526 0.09853 0 596 640: 3%|▎ | 2/59 [00:10<03:27, 3.65s/it]
  137. 1/99 6.35G 0.08526 0.09853 0 596 640: 5%|▌ | 3/59 [00:10<03:20, 3.58s/it]
  138. 1/99 6.35G 0.08491 0.09569 0 511 640: 5%|▌ | 3/59 [00:14<03:20, 3.58s/it]
  139. 1/99 6.35G 0.08491 0.09569 0 511 640: 7%|▋ | 4/59 [00:14<03:11, 3.48s/it]
  140. 1/99 6.35G 0.08466 0.09637 0 581 640: 7%|▋ | 4/59 [00:17<03:11, 3.48s/it]
  141. 1/99 6.35G 0.08466 0.09637 0 581 640: 8%|▊ | 5/59 [00:17<03:04, 3.42s/it]
  142. 1/99 6.35G 0.08471 0.09602 0 556 640: 8%|▊ | 5/59 [00:20<03:04, 3.42s/it]
  143. 1/99 6.35G 0.08471 0.09602 0 556 640: 10%|█ | 6/59 [00:20<02:58, 3.37s/it]
  144. 1/99 6.35G 0.08454 0.09583 0 533 640: 10%|█ | 6/59 [00:24<02:58, 3.37s/it]
  145. 1/99 6.35G 0.08454 0.09583 0 533 640: 12%|█▏ | 7/59 [00:24<02:54, 3.36s/it]
  146. 1/99 6.35G 0.08531 0.09746 0 717 640: 12%|█▏ | 7/59 [00:27<02:54, 3.36s/it]
  147. 1/99 6.35G 0.08531 0.09746 0 717 640: 14%|█▎ | 8/59 [00:27<02:54, 3.43s/it]
  148. 1/99 6.35G 0.08575 0.09843 0 679 640: 14%|█▎ | 8/59 [00:31<02:54, 3.43s/it]
  149. 1/99 6.35G 0.08575 0.09843 0 679 640: 15%|█▌ | 9/59 [00:31<02:55, 3.52s/it]
  150. 1/99 6.35G 0.08565 0.09742 0 526 640: 15%|█▌ | 9/59 [00:34<02:55, 3.52s/it]
  151. 1/99 6.35G 0.08565 0.09742 0 526 640: 17%|█▋ | 10/59 [00:34<02:51, 3.49s/it]
  152. 1/99 6.35G 0.08555 0.09815 0 670 640: 17%|█▋ | 10/59 [00:38<02:51, 3.49s/it]
  153. 1/99 6.35G 0.08555 0.09815 0 670 640: 19%|█▊ | 11/59 [00:38<02:44, 3.43s/it]
  154. 1/99 6.35G 0.08521 0.09721 0 519 640: 19%|█▊ | 11/59 [00:41<02:44, 3.43s/it]
  155. 1/99 6.35G 0.08521 0.09721 0 519 640: 20%|██ | 12/59 [00:41<02:39, 3.40s/it]
  156. 1/99 6.35G 0.08517 0.09802 0 659 640: 20%|██ | 12/59 [00:44<02:39, 3.40s/it]
  157. 1/99 6.35G 0.08517 0.09802 0 659 640: 22%|██▏ | 13/59 [00:44<02:35, 3.37s/it]
  158. 1/99 6.35G 0.08511 0.09739 0 530 640: 22%|██▏ | 13/59 [00:47<02:35, 3.37s/it]
  159. 1/99 6.35G 0.08511 0.09739 0 530 640: 24%|██▎ | 14/59 [00:47<02:30, 3.34s/it]
  160. 1/99 6.35G 0.08502 0.097 0 529 640: 24%|██▎ | 14/59 [00:51<02:30, 3.34s/it]
  161. 1/99 6.35G 0.08502 0.097 0 529 640: 25%|██▌ | 15/59 [00:51<02:29, 3.40s/it]
  162. 1/99 6.35G 0.08489 0.0973 0 598 640: 25%|██▌ | 15/59 [00:54<02:29, 3.40s/it]
  163. 1/99 6.35G 0.08489 0.0973 0 598 640: 27%|██▋ | 16/59 [00:54<02:25, 3.38s/it]
  164. 1/99 6.35G 0.0847 0.0974 0 617 640: 27%|██▋ | 16/59 [00:58<02:25, 3.38s/it]
  165. 1/99 6.35G 0.0847 0.0974 0 617 640: 29%|██▉ | 17/59 [00:58<02:23, 3.43s/it]
  166. 1/99 6.35G 0.08468 0.09795 0 681 640: 29%|██▉ | 17/59 [01:01<02:23, 3.43s/it]
  167. 1/99 6.35G 0.08468 0.09795 0 681 640: 31%|███ | 18/59 [01:01<02:19, 3.40s/it]
  168. 1/99 6.35G 0.08477 0.09799 0 644 640: 31%|███ | 18/59 [01:04<02:19, 3.40s/it]
  169. 1/99 6.35G 0.08477 0.09799 0 644 640: 32%|███▏ | 19/59 [01:04<02:14, 3.37s/it]
  170. 1/99 6.35G 0.08452 0.09806 0 592 640: 32%|███▏ | 19/59 [01:08<02:14, 3.37s/it]
  171. 1/99 6.35G 0.08452 0.09806 0 592 640: 34%|███▍ | 20/59 [01:08<02:10, 3.34s/it]
  172. 1/99 6.35G 0.08447 0.09869 0 737 640: 34%|███▍ | 20/59 [01:11<02:10, 3.34s/it]
  173. 1/99 6.35G 0.08447 0.09869 0 737 640: 36%|███▌ | 21/59 [01:11<02:07, 3.34s/it]
  174. 1/99 6.35G 0.08448 0.09933 0 671 640: 36%|███▌ | 21/59 [01:15<02:07, 3.34s/it]
  175. 1/99 6.35G 0.08448 0.09933 0 671 640: 37%|███▋ | 22/59 [01:15<02:06, 3.41s/it]
  176. 1/99 6.35G 0.08434 0.09853 0 439 640: 37%|███▋ | 22/59 [01:18<02:06, 3.41s/it]
  177. 1/99 6.35G 0.08434 0.09853 0 439 640: 39%|███▉ | 23/59 [01:18<02:05, 3.50s/it]
  178. 1/99 6.35G 0.08424 0.0987 0 676 640: 39%|███▉ | 23/59 [01:22<02:05, 3.50s/it]
  179. 1/99 6.35G 0.08424 0.0987 0 676 640: 41%|████ | 24/59 [01:22<02:02, 3.50s/it]
  180. 1/99 6.35G 0.08414 0.09902 0 636 640: 41%|████ | 24/59 [01:25<02:02, 3.50s/it]
  181. 1/99 6.35G 0.08414 0.09902 0 636 640: 42%|████▏ | 25/59 [01:25<01:56, 3.44s/it]
  182. 1/99 6.35G 0.08395 0.09865 0 512 640: 42%|████▏ | 25/59 [01:28<01:56, 3.44s/it]
  183. 1/99 6.35G 0.08395 0.09865 0 512 640: 44%|████▍ | 26/59 [01:28<01:51, 3.38s/it]
  184. 1/99 6.35G 0.08416 0.09865 0 664 640: 44%|████▍ | 26/59 [01:32<01:51, 3.38s/it]
  185. 1/99 6.35G 0.08416 0.09865 0 664 640: 46%|████▌ | 27/59 [01:32<01:47, 3.36s/it]
  186. 1/99 6.35G 0.0841 0.09871 0 606 640: 46%|████▌ | 27/59 [01:35<01:47, 3.36s/it]
  187. 1/99 6.35G 0.0841 0.09871 0 606 640: 47%|████▋ | 28/59 [01:35<01:43, 3.34s/it]
  188. 1/99 6.35G 0.08396 0.09895 0 608 640: 47%|████▋ | 28/59 [01:39<01:43, 3.34s/it]
  189. 1/99 6.35G 0.08396 0.09895 0 608 640: 49%|████▉ | 29/59 [01:39<01:41, 3.39s/it]
  190. 1/99 6.35G 0.08398 0.09889 0 656 640: 49%|████▉ | 29/59 [01:42<01:41, 3.39s/it]
  191. 1/99 6.35G 0.08398 0.09889 0 656 640: 51%|█████ | 30/59 [01:42<01:41, 3.48s/it]
  192. 1/99 6.35G 0.08399 0.09891 0 631 640: 51%|█████ | 30/59 [01:46<01:41, 3.48s/it]
  193. 1/99 6.35G 0.08399 0.09891 0 631 640: 53%|█████▎ | 31/59 [01:46<01:37, 3.47s/it]
  194. 1/99 6.35G 0.08395 0.0986 0 496 640: 53%|█████▎ | 31/59 [01:49<01:37, 3.47s/it]
  195. 1/99 6.35G 0.08395 0.0986 0 496 640: 54%|█████▍ | 32/59 [01:49<01:32, 3.42s/it]
  196. 1/99 6.35G 0.08461 0.09843 0 780 640: 54%|█████▍ | 32/59 [01:52<01:32, 3.42s/it]
  197. 1/99 6.35G 0.08461 0.09843 0 780 640: 56%|█████▌ | 33/59 [01:52<01:28, 3.39s/it]
  198. 1/99 6.35G 0.08516 0.09805 0 686 640: 56%|█████▌ | 33/59 [01:56<01:28, 3.39s/it]
  199. 1/99 6.35G 0.08516 0.09805 0 686 640: 58%|█████▊ | 34/59 [01:56<01:23, 3.35s/it]
  200. 1/99 6.35G 0.08573 0.09772 0 710 640: 58%|█████▊ | 34/59 [01:59<01:23, 3.35s/it]
  201. 1/99 6.35G 0.08573 0.09772 0 710 640: 59%|█████▉ | 35/59 [01:59<01:20, 3.34s/it]
  202. 1/99 6.35G 0.08624 0.0974 0 668 640: 59%|█████▉ | 35/59 [02:02<01:20, 3.34s/it]
  203. 1/99 6.35G 0.08624 0.0974 0 668 640: 61%|██████ | 36/59 [02:02<01:18, 3.40s/it]
  204. 1/99 6.35G 0.08656 0.0973 0 701 640: 61%|██████ | 36/59 [02:06<01:18, 3.40s/it]
  205. 1/99 6.35G 0.08656 0.0973 0 701 640: 63%|██████▎ | 37/59 [02:06<01:16, 3.50s/it]
  206. 1/99 6.35G 0.08677 0.09703 0 619 640: 63%|██████▎ | 37/59 [02:10<01:16, 3.50s/it]
  207. 1/99 6.35G 0.08677 0.09703 0 619 640: 64%|██████▍ | 38/59 [02:10<01:13, 3.48s/it]
  208. 1/99 6.35G 0.08706 0.09693 0 644 640: 64%|██████▍ | 38/59 [02:13<01:13, 3.48s/it]
  209. 1/99 6.35G 0.08706 0.09693 0 644 640: 66%|██████▌ | 39/59 [02:13<01:08, 3.43s/it]
  210. 1/99 6.35G 0.08727 0.09694 0 612 640: 66%|██████▌ | 39/59 [02:16<01:08, 3.43s/it]
  211. 1/99 6.35G 0.08727 0.09694 0 612 640: 68%|██████▊ | 40/59 [02:16<01:04, 3.39s/it]
  212. 1/99 6.35G 0.08724 0.09691 0 534 640: 68%|██████▊ | 40/59 [02:19<01:04, 3.39s/it]
  213. 1/99 6.35G 0.08724 0.09691 0 534 640: 69%|██████▉ | 41/59 [02:19<01:00, 3.35s/it]
  214. 1/99 6.35G 0.08719 0.09647 0 423 640: 69%|██████▉ | 41/59 [02:23<01:00, 3.35s/it]
  215. 1/99 6.35G 0.08719 0.09647 0 423 640: 71%|███████ | 42/59 [02:23<00:56, 3.34s/it]
  216. 1/99 6.35G 0.08732 0.09693 0 876 640: 71%|███████ | 42/59 [02:26<00:56, 3.34s/it]
  217. 1/99 6.35G 0.08732 0.09693 0 876 640: 73%|███████▎ | 43/59 [02:26<00:53, 3.37s/it]
  218. 1/99 6.35G 0.08741 0.09662 0 531 640: 73%|███████▎ | 43/59 [02:30<00:53, 3.37s/it]
  219. 1/99 6.35G 0.08741 0.09662 0 531 640: 75%|███████▍ | 44/59 [02:30<00:53, 3.59s/it]
  220. 1/99 6.35G 0.0875 0.09647 0 597 640: 75%|███████▍ | 44/59 [02:34<00:53, 3.59s/it]
  221. 1/99 6.35G 0.0875 0.09647 0 597 640: 76%|███████▋ | 45/59 [02:34<00:49, 3.56s/it]
  222. 1/99 6.35G 0.08761 0.09656 0 705 640: 76%|███████▋ | 45/59 [02:37<00:49, 3.56s/it]
  223. 1/99 6.35G 0.08761 0.09656 0 705 640: 78%|███████▊ | 46/59 [02:37<00:45, 3.48s/it]
  224. 1/99 6.35G 0.0876 0.09647 0 608 640: 78%|███████▊ | 46/59 [02:40<00:45, 3.48s/it]
  225. 1/99 6.35G 0.0876 0.09647 0 608 640: 80%|███████▉ | 47/59 [02:40<00:41, 3.42s/it]
  226. 1/99 6.35G 0.08763 0.09649 0 665 640: 80%|███████▉ | 47/59 [02:44<00:41, 3.42s/it]
  227. 1/99 6.35G 0.08763 0.09649 0 665 640: 81%|████████▏ | 48/59 [02:44<00:37, 3.39s/it]
  228. 1/99 6.35G 0.08768 0.09669 0 729 640: 81%|████████▏ | 48/59 [02:47<00:37, 3.39s/it]
  229. 1/99 6.35G 0.08768 0.09669 0 729 640: 83%|████████▎ | 49/59 [02:47<00:33, 3.35s/it]
  230. 1/99 6.35G 0.08772 0.09687 0 695 640: 83%|████████▎ | 49/59 [02:50<00:33, 3.35s/it]
  231. 1/99 6.35G 0.08772 0.09687 0 695 640: 85%|████████▍ | 50/59 [02:50<00:30, 3.38s/it]
  232. 1/99 6.35G 0.08773 0.09671 0 549 640: 85%|████████▍ | 50/59 [02:54<00:30, 3.38s/it]
  233. 1/99 6.35G 0.08773 0.09671 0 549 640: 86%|████████▋ | 51/59 [02:54<00:27, 3.47s/it]
  234. 1/99 6.35G 0.08776 0.09689 0 710 640: 86%|████████▋ | 51/59 [02:58<00:27, 3.47s/it]
  235. 1/99 6.35G 0.08776 0.09689 0 710 640: 88%|████████▊ | 52/59 [02:58<00:24, 3.50s/it]
  236. 1/99 6.35G 0.08775 0.09695 0 630 640: 88%|████████▊ | 52/59 [03:01<00:24, 3.50s/it]
  237. 1/99 6.35G 0.08775 0.09695 0 630 640: 90%|████████▉ | 53/59 [03:01<00:20, 3.43s/it]
  238. 1/99 6.35G 0.08779 0.09712 0 693 640: 90%|████████▉ | 53/59 [03:04<00:20, 3.43s/it]
  239. 1/99 6.35G 0.08779 0.09712 0 693 640: 92%|█████████▏| 54/59 [03:04<00:16, 3.39s/it]
  240. 1/99 6.35G 0.08769 0.09716 0 585 640: 92%|█████████▏| 54/59 [03:08<00:16, 3.39s/it]
  241. 1/99 6.35G 0.08769 0.09716 0 585 640: 93%|█████████▎| 55/59 [03:08<00:13, 3.36s/it]
  242. 1/99 6.35G 0.08763 0.09685 0 515 640: 93%|█████████▎| 55/59 [03:11<00:13, 3.36s/it]
  243. 1/99 6.35G 0.08763 0.09685 0 515 640: 95%|█████████▍| 56/59 [03:11<00:10, 3.34s/it]
  244. 1/99 6.35G 0.08765 0.09699 0 705 640: 95%|█████████▍| 56/59 [03:14<00:10, 3.34s/it]
  245. 1/99 6.35G 0.08765 0.09699 0 705 640: 97%|█████████▋| 57/59 [03:14<00:06, 3.36s/it]
  246. 1/99 6.35G 0.08765 0.09736 0 726 640: 97%|█████████▋| 57/59 [03:18<00:06, 3.36s/it]
  247. 1/99 6.35G 0.08765 0.09736 0 726 640: 98%|█████████▊| 58/59 [03:18<00:03, 3.47s/it]
  248. 1/99 6.37G 0.08766 0.09725 0 91 640: 98%|█████████▊| 58/59 [03:18<00:03, 3.47s/it]
  249. 1/99 6.37G 0.08766 0.09725 0 91 640: 100%|██████████| 59/59 [03:18<00:00, 2.58s/it]
  250. 1/99 6.37G 0.08766 0.09725 0 91 640: 100%|██████████| 59/59 [03:18<00:00, 3.37s/it]
  251. Class Images Labels P R mAP@.5 mAP@.5:.95: 0%| | 0/4 [00:00<?, ?it/s]
  252. Class Images Labels P R mAP@.5 mAP@.5:.95: 25%|██▌ | 1/4 [00:02<00:07, 2.44s/it]
  253. Class Images Labels P R mAP@.5 mAP@.5:.95: 50%|█████ | 2/4 [00:05<00:05, 2.62s/it]
  254. Class Images Labels P R mAP@.5 mAP@.5:.95: 75%|███████▌ | 3/4 [00:07<00:02, 2.53s/it]
  255. Class Images Labels P R mAP@.5 mAP@.5:.95: 100%|██████████| 4/4 [00:08<00:00, 1.90s/it]
  256. Class Images Labels P R mAP@.5 mAP@.5:.95: 100%|██████████| 4/4 [00:08<00:00, 2.14s/it]
  257. all 207 3407 0.12 0.382 0.0979 0.0192

训练过程中,结果会自动创建目录存储在runs下,如下所示:

yolov5s-bifpn模型结果:

yolov5s模型结果:

随机选取样例图像测试如下:

为了便于后续使用结果数据,这里对其结果数据进行解析存储如下:

  1. {
  2. "crack": [
  3. [
  4. 0.26700732111930849,
  5. [
  6. 0,
  7. 296,
  8. 23,
  9. 392
  10. ]
  11. ],
  12. [
  13. 0.2672766149044037,
  14. [
  15. 686,
  16. 648,
  17. 767,
  18. 689
  19. ]
  20. ],
  21. [
  22. 0.2740951180458069,
  23. [
  24. 1,
  25. 393,
  26. 26,
  27. 498
  28. ]
  29. ],
  30. [
  31. 0.27556174993515017,
  32. [
  33. 631,
  34. 634,
  35. 722,
  36. 671
  37. ]
  38. ],
  39. [
  40. 0.27758586406707766,
  41. [
  42. 582,
  43. 247,
  44. 630,
  45. 295
  46. ]
  47. ],
  48. [
  49. 0.2786214053630829,
  50. [
  51. 801,
  52. 711,
  53. 869,
  54. 753
  55. ]
  56. ],
  57. [
  58. 0.28326842188835146,
  59. [
  60. 911,
  61. 761,
  62. 966,
  63. 819
  64. ]
  65. ],
  66. [
  67. 0.2855015993118286,
  68. [
  69. 726,
  70. 61,
  71. 765,
  72. 126
  73. ]
  74. ],
  75. [
  76. 0.2891019582748413,
  77. [
  78. 541,
  79. 621,
  80. 613,
  81. 658
  82. ]
  83. ],
  84. [
  85. 0.28970593214035036,
  86. [
  87. 863,
  88. 745,
  89. 932,
  90. 780
  91. ]
  92. ],
  93. [
  94. 0.28980544209480288,
  95. [
  96. 752,
  97. 8,
  98. 785,
  99. 76
  100. ]
  101. ],
  102. [
  103. 0.2912375032901764,
  104. [
  105. 986,
  106. 860,
  107. 1020,
  108. 918
  109. ]
  110. ],
  111. [
  112. 0.29403477907180788,
  113. [
  114. 619,
  115. 205,
  116. 663,
  117. 261
  118. ]
  119. ],
  120. [
  121. 0.29819419980049136,
  122. [
  123. 666,
  124. 641,
  125. 740,
  126. 677
  127. ]
  128. ],
  129. [
  130. 0.30100756883621218,
  131. [
  132. 1005,
  133. 903,
  134. 1024,
  135. 951
  136. ]
  137. ],
  138. [
  139. 0.30114322900772097,
  140. [
  141. 548,
  142. 281,
  143. 588,
  144. 338
  145. ]
  146. ],
  147. [
  148. 0.30483242869377139,
  149. [
  150. 1,
  151. 342,
  152. 26,
  153. 450
  154. ]
  155. ],
  156. [
  157. 0.3290395140647888,
  158. [
  159. 820,
  160. 720,
  161. 890,
  162. 763
  163. ]
  164. ],
  165. [
  166. 0.3302559554576874,
  167. [
  168. 652,
  169. 165,
  170. 695,
  171. 221
  172. ]
  173. ],
  174. [
  175. 0.3334021270275116,
  176. [
  177. 0,
  178. 693,
  179. 35,
  180. 736
  181. ]
  182. ],
  183. [
  184. 0.33690938353538515,
  185. [
  186. 605,
  187. 222,
  188. 650,
  189. 275
  190. ]
  191. ],
  192. [
  193. 0.34495481848716738,
  194. [
  195. 0,
  196. 533,
  197. 27,
  198. 615
  199. ]
  200. ],
  201. [
  202. 0.37444597482681277,
  203. [
  204. 963,
  205. 713,
  206. 1018,
  207. 755
  208. ]
  209. ],
  210. [
  211. 0.37496164441108706,
  212. [
  213. 686,
  214. 121,
  215. 735,
  216. 176
  217. ]
  218. ],
  219. [
  220. 0.3889273703098297,
  221. [
  222. 358,
  223. 590,
  224. 432,
  225. 633
  226. ]
  227. ],
  228. [
  229. 0.40112408995628359,
  230. [
  231. 5,
  232. 612,
  233. 38,
  234. 693
  235. ]
  236. ],
  237. [
  238. 0.40698984265327456,
  239. [
  240. 593,
  241. 235,
  242. 640,
  243. 287
  244. ]
  245. ],
  246. [
  247. 0.41528889536857607,
  248. [
  249. 633,
  250. 185,
  251. 677,
  252. 244
  253. ]
  254. ],
  255. [
  256. 0.4153532385826111,
  257. [
  258. 446,
  259. 474,
  260. 492,
  261. 534
  262. ]
  263. ],
  264. [
  265. 0.41710415482521059,
  266. [
  267. 996,
  268. 879,
  269. 1024,
  270. 942
  271. ]
  272. ],
  273. [
  274. 0.42140141129493716,
  275. [
  276. 762,
  277. 0,
  278. 792,
  279. 47
  280. ]
  281. ],
  282. [
  283. 0.42363840341567995,
  284. [
  285. 675,
  286. 137,
  287. 724,
  288. 187
  289. ]
  290. ],
  291. [
  292. 0.42380252480506899,
  293. [
  294. 422,
  295. 583,
  296. 483,
  297. 635
  298. ]
  299. ],
  300. [
  301. 0.43151307106018069,
  302. [
  303. 709,
  304. 93,
  305. 750,
  306. 155
  307. ]
  308. ],
  309. [
  310. 0.4327857792377472,
  311. [
  312. 844,
  313. 734,
  314. 915,
  315. 775
  316. ]
  317. ],
  318. [
  319. 0.4366927146911621,
  320. [
  321. 555,
  322. 272,
  323. 604,
  324. 315
  325. ]
  326. ],
  327. [
  328. 0.4374251663684845,
  329. [
  330. 233,
  331. 649,
  332. 297,
  333. 688
  334. ]
  335. ],
  336. [
  337. 0.44089221954345705,
  338. [
  339. 714,
  340. 657,
  341. 784,
  342. 701
  343. ]
  344. ],
  345. [
  346. 0.448123574256897,
  347. [
  348. 739,
  349. 37,
  350. 774,
  351. 107
  352. ]
  353. ],
  354. [
  355. 0.4551221430301666,
  356. [
  357. 161,
  358. 641,
  359. 238,
  360. 690
  361. ]
  362. ],
  363. [
  364. 0.45720604062080386,
  365. [
  366. 769,
  367. 688,
  368. 830,
  369. 736
  370. ]
  371. ],
  372. [
  373. 0.4593600630760193,
  374. [
  375. 963,
  376. 839,
  377. 1007,
  378. 886
  379. ]
  380. ],
  381. [
  382. 0.48793330788612368,
  383. [
  384. 607,
  385. 626,
  386. 690,
  387. 664
  388. ]
  389. ],
  390. [
  391. 0.4884047508239746,
  392. [
  393. 925,
  394. 772,
  395. 979,
  396. 835
  397. ]
  398. ],
  399. [
  400. 0.5071386694908142,
  401. [
  402. 222,
  403. 597,
  404. 306,
  405. 647
  406. ]
  407. ],
  408. [
  409. 0.5111898183822632,
  410. [
  411. 473,
  412. 431,
  413. 514,
  414. 497
  415. ]
  416. ],
  417. [
  418. 0.5346865057945252,
  419. [
  420. 105,
  421. 662,
  422. 182,
  423. 713
  424. ]
  425. ],
  426. [
  427. 0.5522925853729248,
  428. [
  429. 540,
  430. 303,
  431. 569,
  432. 378
  433. ]
  434. ],
  435. [
  436. 0.5579397082328796,
  437. [
  438. 506,
  439. 367,
  440. 552,
  441. 432
  442. ]
  443. ],
  444. [
  445. 0.5627263784408569,
  446. [
  447. 295,
  448. 580,
  449. 388,
  450. 633
  451. ]
  452. ],
  453. [
  454. 0.5672629475593567,
  455. [
  456. 475,
  457. 617,
  458. 569,
  459. 653
  460. ]
  461. ],
  462. [
  463. 0.574158251285553,
  464. [
  465. 24,
  466. 693,
  467. 108,
  468. 731
  469. ]
  470. ],
  471. [
  472. 0.5847405791282654,
  473. [
  474. 426,
  475. 526,
  476. 461,
  477. 594
  478. ]
  479. ]
  480. ]
  481. }

与我之前的文章中的结果格式保持一致。


本文转载自: https://blog.csdn.net/Together_CZ/article/details/127735859
版权归原作者 Together_CZ 所有, 如有侵权,请联系我们删除。

“基于yolov5s+bifpn实践隧道裂缝裂痕检测”的评论:

还没有评论