0


AI:paddlepaddle2.6,paddleorc2.8,cuda12,cudnn,nccl,python10环境

1.安装英伟达显卡驱动
首先需要到NAVIDIA官网去查自己的电脑是不是支持GPU运算。
网址是:CUDA GPUs | NVIDIA Developer。打开后的界面大致如下,只要里边有对应的型号就可以用GPU运算,并且每一款设备都列出来相关的计算能力(Compute Capability)。

系统层面查看当前安装的显卡型号:

  1. (py10_paddleocr2.8_gpu_wubo) root@jettech-WS-C621E-SAGE-Series:~# lspci | grep nvida
  2. (py10_paddleocr2.8_gpu_wubo) root@jettech-WS-C621E-SAGE-Series:~# lspci | grep VGA
  3. 3b:00.0 VGA compatible controller: NVIDIA Corporation GV104 [GeForce GTX 1180] (rev a1)
  4. 5e:00.0 VGA compatible controller: NVIDIA Corporation GV104 [GeForce GTX 1180] (rev a1)
  5. 86:00.0 VGA compatible controller: NVIDIA Corporation GV104 [GeForce GTX 1180] (rev a1)
  6. af:00.0 VGA compatible controller: NVIDIA Corporation GV104 [GeForce GTX 1180] (rev a1)

如果是ubuntu系统:明确了显卡性能后,接下来就开始在ubuntu系统安装对应的显卡驱动。

首先,检测NVIDIA图形卡和推荐的驱动程序的模型,在终端输入:

  1. (py10_paddleocr2.8_gpu_wubo) root@jettech-WS-C621E-SAGE-Series:~# ubuntu-drivers devices
  2. WARNING:root:_pkg_get_support nvidia-driver-530: package has invalid Support PBheader, cannot determine support level
  3. WARNING:root:_pkg_get_support nvidia-driver-515-server: package has invalid Support PBheader, cannot determine support level
  4. WARNING:root:_pkg_get_support nvidia-driver-525-server: package has invalid Support PBheader, cannot determine support level
  5. == /sys/devices/pci0000:3a/0000:3a:00.0/0000:3b:00.0 ==
  6. modalias : pci:v000010DEd00001E87sv00001458sd000037A8bc03sc00i00
  7. vendor : NVIDIA Corporation
  8. driver : nvidia-driver-530 - distro non-free recommended
  9. driver : nvidia-driver-470-server - distro non-free
  10. driver : nvidia-driver-440 - third-party non-free
  11. driver : nvidia-driver-515 - third-party non-free
  12. driver : nvidia-driver-450-server - distro non-free
  13. driver : nvidia-driver-515-server - distro non-free
  14. driver : nvidia-driver-418-server - distro non-free
  15. driver : nvidia-driver-418 - third-party non-free
  16. driver : nvidia-driver-460 - third-party non-free
  17. driver : nvidia-driver-450 - third-party non-free
  18. driver : nvidia-driver-470 - third-party non-free
  19. driver : nvidia-driver-455 - third-party non-free
  20. driver : nvidia-driver-495 - third-party non-free
  21. driver : nvidia-driver-525 - third-party non-free
  22. driver : nvidia-driver-465 - third-party non-free
  23. driver : nvidia-driver-525-server - distro non-free
  24. driver : nvidia-driver-410 - third-party non-free
  25. driver : nvidia-driver-520 - third-party non-free
  26. driver : nvidia-driver-510 - third-party non-free
  27. driver : xserver-xorg-video-nouveau - distro free builtin

具体可以使用下面的命令安装:

  1. (py10_paddleocr2.8_gpu_wubo) root@jettech-WS-C621E-SAGE-Series:~# ubuntu-drivers autoinstall

或者去官网下载驱动再手动安装的方式,命令官网上有。

下载 NVIDIA 官方驱动 | NVIDIA

NVIDIA GeForce 驱动程序 - N 卡驱动 | NVIDIA

安装完成后重启系统,然后在终端中输入命令检测是否安装成功:

  1. (py10_paddleocr2.8_gpu_wubo) root@jettech-WS-C621E-SAGE-Series:~# nvidia-smi
  2. (py10_paddleocr2.8_gpu_wubo) root@jettech-WS-C621E-SAGE-Series:~# nvidia-smi
  3. Fri Jul 12 15:43:58 2024
  4. +---------------------------------------------------------------------------------------+
  5. | NVIDIA-SMI 530.41.03 Driver Version: 530.41.03 CUDA Version: 12.1 |
  6. |-----------------------------------------+----------------------+----------------------+
  7. | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
  8. | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
  9. | | | MIG M. |
  10. |=========================================+======================+======================|
  11. | 0 NVIDIA GeForce RTX 2080 Off| 00000000:3B:00.0 Off | N/A |
  12. | 32% 41C P8 3W / 225W| 8MiB / 8192MiB | 0% Default |
  13. | | | N/A |
  14. +-----------------------------------------+----------------------+----------------------+
  15. | 1 NVIDIA GeForce RTX 2080 Off| 00000000:5E:00.0 Off | N/A |
  16. | 27% 41C P8 4W / 225W| 8MiB / 8192MiB | 0% Default |
  17. | | | N/A |
  18. +-----------------------------------------+----------------------+----------------------+
  19. | 2 NVIDIA GeForce RTX 2080 Off| 00000000:86:00.0 Off | N/A |
  20. | 27% 36C P8 1W / 225W| 8MiB / 8192MiB | 0% Default |
  21. | | | N/A |
  22. +-----------------------------------------+----------------------+----------------------+
  23. | 3 NVIDIA GeForce RTX 2080 Off| 00000000:AF:00.0 Off | N/A |
  24. | 31% 43C P8 9W / 225W| 80MiB / 8192MiB | 0% Default |
  25. | | | N/A |
  26. +-----------------------------------------+----------------------+----------------------+
  27. +---------------------------------------------------------------------------------------+
  28. | Processes: |
  29. | GPU GI CI PID Type Process name GPU Memory |
  30. | ID ID Usage |
  31. |=======================================================================================|
  32. | 0 N/A N/A 52177 G /usr/lib/xorg/Xorg 4MiB |
  33. | 1 N/A N/A 52177 G /usr/lib/xorg/Xorg 4MiB |
  34. | 2 N/A N/A 52177 G /usr/lib/xorg/Xorg 4MiB |
  35. | 3 N/A N/A 52177 G /usr/lib/xorg/Xorg 28MiB |
  36. | 3 N/A N/A 52282 G /usr/bin/gnome-shell 46MiB |
  37. +---------------------------------------------------------------------------------------+
  38. (py10_paddleocr2.8_gpu_wubo) root@jettech-WS-C621E-SAGE-Series:~#

上图显示cuda最高支持12.1版本

驱动版本Driver Version: 530.41.03

显卡型号:NVIDIA GeForce RTX 2080

显卡num:共计4个 每个显存大小8G

2.安装CUDA
首先要知道硬件支持的CUDA版本:
在上图右上角我们看到“CUDA Version:12.1”,这个表明对于这款显卡,我们后面要装的CUDA版本最高不能超过12.1。

其次要明确CUDA版本需求:

本文最终的目的是装好深度学习环境,这里指的是最终能够正常的使用pytorch[facebook公司]和paddlepaddle【百度公司】或TensorFlow【google公司】。这三款是当前使用比较多的深度学习框架,pytorch[facebook]侧重于科研和模型验证,paddlepaddle更适合工业级深度学习开发部署(当然也可以使用tensorflow)。

为了能够使用他们,我们接下来需要按照顺序安装CUDA、cuDNN、nccl、paddlepaddle、pytorch【省略】安装paddleocr。

在正式安装前我们首先要来确定当前的版本一致性,否则装到后面就会发现各种版本问题了。

接下来我们先看paddlepaddle和pytorch官网目前稳定版所支持的cuda。

paddlepaddle目前官网安装界面如下图所示:

pytorch官网安装界面:

尽量选择两个框架都支持的了,并且本机驱动也支持的CUDA版本。

接下来开始安装:

首先在英伟达官网下载cuda12进行安装即可。

照runfile(local)安装的方式简单,只需要在终端输入图中下方的两条NVIDIA推荐的命令就好了。

  1. 2中方式
  2. 1)交互
  3. ./cuda_xxxxxxx_linux.run
  4. 2)静默
  5. ./cuda_xxxxxxx_linux.run --silent --toolkit --samples
  1. (py10_paddleocr2.8_gpu_wubo) root@jettech-WS-C621E-SAGE-Series:~# vim ~/.bashrc
  2. export PATH=/usr/local/cuda-12.0/bin${PATH:+:${PATH}}
  3. export LD_LIBRARY_PATH=/usr/local/cuda-12.0/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}

最后,更新环境变量配置:

  1. source ~/.bashrc

至此cuda安装完成,输入nvcc -V命令查看cuda信息。

  1. (py10_paddleocr2.8_gpu_wubo) root@jettech-WS-C621E-SAGE-Series:~# nvcc -V
  2. nvcc: NVIDIA (R) Cuda compiler driver
  3. Copyright (c) 2005-2022 NVIDIA Corporation
  4. Built on Mon_Oct_24_19:12:58_PDT_2022
  5. Cuda compilation tools, release 12.0, V12.0.76
  6. Build cuda_12.0.r12.0/compiler.31968024_0

如果想要卸载CUDA(例如重新安装了驱动等情况),需要使用下面的命令:

  1. cd /usr/local/cuda-xx.x/bin/
  2. sudo ./cuda-uninstaller
  3. sudo rm -rf /usr/local/cuda-xx.x

3.安装CUDNN

cuDNN(CUDA Deep Neural Network library) 是由NVIDIA开发的一个深度学习GPU加速库。

目的和功能: cuDNN旨在提供高效、标准化的原语(基本操作)来加速深度学习框架(例如TensorFlow、PyTorch)在NVIDIA GPU上的运算。

专门为深度学习设计:cuDNN提供了为深度学习任务高度优化的函数,如:

  • 卷积操作
  • 池化操作
  • 激活函数
  • 归一化等

安装CUDNN的过程相对比较简单。上官网进行下载。

选择对应的CUDA版本,单击后选择cuDNN Library for Linux(x86_64)下载安装包。

然后打开终端输入类似下面的命令进行解压并拷贝安装:

  1. cp -Pcudnn*/include/cudnn*.h cuda/include/
  2. cp -P cudnn*/lib/libcudnn* cuda/lib64/
  3. chmod a+r cuda/include/cudnn*.h cuda/lib64/libcudnn*

其实,cuDNN的安装本质上就是复制一堆的文件到CUDA中去。

我们可以使用如下的命令查看cuDNN的信息:

CUDN + cuDNN安装完成,我们可以监控一下gpu状态:

  1. watch -n 1 nvidia-smi

4.安装NCCL

由于深度学习分布式训练需要nccl支持,可以调用多张显卡计算,因此本小节来安装nccl。

首先从官网下载对应版本的nccl.

  1. (py10_paddleocr2.8_gpu_wubo) root@jettech-WS-C621E-SAGE-Series:/usr/local# tar -xf nccl_2.19.3-1+cuda12.0_x86_64.txz
  2. (py10_paddleocr2.8_gpu_wubo) root@jettech-WS-C621E-SAGE-Series:/usr/local# ln -sf nccl_2.19.3-1+cuda12.0_x86_64 nccl
  3. (py10_paddleocr2.8_gpu_wubo) root@jettech-WS-C621E-SAGE-Series:/usr/local# cd include/^C
  4. (py10_paddleocr2.8_gpu_wubo) root@jettech-WS-C621E-SAGE-Series:/usr/local# cat /etc/ld.so.conf.d/nccl_2.19.3-1+cuda12.0.conf
  5. /usr/local/nccl/lib
  6. (py10_paddleocr2.8_gpu_wubo) root@jettech-WS-C621E-SAGE-Series:/usr/local/include# ln -sf ../nccl/include nccl

没安装之前报错:

安装之后:

  1. >>> import paddle
  2. >>> paddle.utils.run_check()
  3. Running verify PaddlePaddle program ...
  4. I0712 17:30:32.906308 16653 program_interpreter.cc:212] New Executor is Running.
  5. W0712 17:30:32.906838 16653 gpu_resources.cc:119] Please NOTE: device: 0, GPU Compute Capability: 7.5, Driver API Version: 12.1, Runtime API Version: 12.0
  6. W0712 17:30:32.940363 16653 gpu_resources.cc:164] device: 0, cuDNN Version: 8.0.
  7. I0712 17:30:35.770787 16653 interpreter_util.cc:624] Standalone Executor is Used.
  8. PaddlePaddle works well on 1 GPU.
  9. ======================= Modified FLAGS detected =======================
  10. FLAGS(name='FLAGS_selected_gpus', current_value='2', default_value='')
  11. =======================================================================
  12. I0712 17:30:38.527948 17096 tcp_utils.cc:107] Retry to connect to 127.0.0.1:40265 while the server is not yet listening.
  13. ======================= Modified FLAGS detected =======================
  14. FLAGS(name='FLAGS_selected_gpus', current_value='3', default_value='')
  15. =======================================================================
  16. I0712 17:30:38.738694 17097 tcp_utils.cc:107] Retry to connect to 127.0.0.1:40265 while the server is not yet listening.
  17. ======================= Modified FLAGS detected =======================
  18. FLAGS(name='FLAGS_selected_gpus', current_value='1', default_value='')
  19. =======================================================================
  20. I0712 17:30:38.817551 17095 tcp_utils.cc:107] Retry to connect to 127.0.0.1:40265 while the server is not yet listening.
  21. ======================= Modified FLAGS detected =======================
  22. FLAGS(name='FLAGS_selected_gpus', current_value='0', default_value='')
  23. =======================================================================
  24. I0712 17:30:39.014600 17094 tcp_utils.cc:181] The server starts to listen on IP_ANY:40265
  25. I0712 17:30:39.014768 17094 tcp_utils.cc:130] Successfully connected to 127.0.0.1:40265
  26. I0712 17:30:41.528342 17096 tcp_utils.cc:130] Successfully connected to 127.0.0.1:40265
  27. I0712 17:30:41.528888 17096 process_group_nccl.cc:129] ProcessGroupNCCL pg_timeout_ 1800000
  28. I0712 17:30:41.739022 17097 tcp_utils.cc:130] Successfully connected to 127.0.0.1:40265
  29. I0712 17:30:41.776871 17097 process_group_nccl.cc:129] ProcessGroupNCCL pg_timeout_ 1800000
  30. I0712 17:30:41.817867 17095 tcp_utils.cc:130] Successfully connected to 127.0.0.1:40265
  31. I0712 17:30:41.840788 17095 process_group_nccl.cc:129] ProcessGroupNCCL pg_timeout_ 1800000
  32. I0712 17:30:41.851110 17094 process_group_nccl.cc:129] ProcessGroupNCCL pg_timeout_ 1800000
  33. W0712 17:30:43.391786 17096 gpu_resources.cc:119] Please NOTE: device: 2, GPU Compute Capability: 7.5, Driver API Version: 12.1, Runtime API Version: 12.0
  34. W0712 17:30:43.394407 17096 gpu_resources.cc:164] device: 2, cuDNN Version: 8.0.
  35. W0712 17:30:43.564615 17097 gpu_resources.cc:119] Please NOTE: device: 3, GPU Compute Capability: 7.5, Driver API Version: 12.1, Runtime API Version: 12.0
  36. W0712 17:30:43.566882 17097 gpu_resources.cc:164] device: 3, cuDNN Version: 8.0.
  37. W0712 17:30:43.627422 17095 gpu_resources.cc:119] Please NOTE: device: 1, GPU Compute Capability: 7.5, Driver API Version: 12.1, Runtime API Version: 12.0
  38. W0712 17:30:43.629004 17095 gpu_resources.cc:164] device: 1, cuDNN Version: 8.0.
  39. W0712 17:30:43.656805 17094 gpu_resources.cc:119] Please NOTE: device: 0, GPU Compute Capability: 7.5, Driver API Version: 12.1, Runtime API Version: 12.0
  40. W0712 17:30:43.659112 17094 gpu_resources.cc:164] device: 0, cuDNN Version: 8.0.
  41. I0712 17:30:46.433609 17096 process_group_nccl.cc:132] ProcessGroupNCCL destruct
  42. I0712 17:30:46.433516 17095 process_group_nccl.cc:132] ProcessGroupNCCL destruct
  43. I0712 17:30:46.435761 17097 process_group_nccl.cc:132] ProcessGroupNCCL destruct
  44. I0712 17:30:46.437583 17094 process_group_nccl.cc:132] ProcessGroupNCCL destruct
  45. I0712 17:30:46.843884 17168 tcp_store.cc:289] receive shutdown event and so quit from MasterDaemon run loop
  46. PaddlePaddle works well on 4 GPUs.
  47. PaddlePaddle is installed successfully! Let's start deep learning with PaddlePaddle now.

验证NCCL

  1. https://github.com/NVIDIA/nccl-tests
  2. (py10_paddlepaddle2.6_paddleocr2.8_cuda12_gpu_wubo) root@jettech-WS-C621E-SAGE-Series:/data/wubo/paddleocr/env/nccl# ls
  3. nccl-tests-2.13.9 nccl-tests-2.13.9.tar.gz
  4. (py10_paddlepaddle2.6_paddleocr2.8_cuda12_gpu_wubo) root@jettech-WS-C621E-SAGE-Series:/data/wubo/paddleocr/env/nccl# cd nccl-tests-2.13.9/
  5. (py10_paddlepaddle2.6_paddleocr2.8_cuda12_gpu_wubo) root@jettech-WS-C621E-SAGE-Series:/data/wubo/paddleocr/env/nccl/nccl-tests-2.13.9# ls^C
  6. (py10_paddlepaddle2.6_paddleocr2.8_cuda12_gpu_wubo) root@jettech-WS-C621E-SAGE-Series:/data/wubo/paddleocr/env/nccl/nccl-tests-2.13.9#
  7. (py10_paddlepaddle2.6_paddleocr2.8_cuda12_gpu_wubo) root@jettech-WS-C621E-SAGE-Series:/data/wubo/paddleocr/env/nccl/nccl-tests-2.13.9# ls
  8. doc LICENSE.txt Makefile README.md src verifiable
  9. (py10_paddlepaddle2.6_paddleocr2.8_cuda12_gpu_wubo) root@jettech-WS-C621E-SAGE-Series:/data/wubo/paddleocr/env/nccl/nccl-tests-2.13.9# make
  10. make -C src build BUILDDIR=/data/wubo/paddleocr/env/nccl/nccl-tests-2.13.9/build
  11. make[1]: 进入目录“/data/wubo/paddleocr/env/nccl/nccl-tests-2.13.9/src
  12. Compiling timer.cc > /data/wubo/paddleocr/env/nccl/nccl-tests-2.13.9/build/timer.o
  13. Compiling /data/wubo/paddleocr/env/nccl/nccl-tests-2.13.9/build/verifiable/verifiable.o
  14. Compiling all_reduce.cu > /data/wubo/paddleocr/env/nccl/nccl-tests-2.13.9/build/all_reduce.o
  15. Compiling common.cu > /data/wubo/paddleocr/env/nccl/nccl-tests-2.13.9/build/common.o
  16. Linking /data/wubo/paddleocr/env/nccl/nccl-tests-2.13.9/build/all_reduce.o > /data/wubo/paddleocr/env/nccl/nccl-tests-2.13.9/build/all_reduce_perf
  17. Compiling all_gather.cu > /data/wubo/paddleocr/env/nccl/nccl-tests-2.13.9/build/all_gather.o
  18. Linking /data/wubo/paddleocr/env/nccl/nccl-tests-2.13.9/build/all_gather.o > /data/wubo/paddleocr/env/nccl/nccl-tests-2.13.9/build/all_gather_perf
  19. Compiling broadcast.cu > /data/wubo/paddleocr/env/nccl/nccl-tests-2.13.9/build/broadcast.o
  20. Linking /data/wubo/paddleocr/env/nccl/nccl-tests-2.13.9/build/broadcast.o > /data/wubo/paddleocr/env/nccl/nccl-tests-2.13.9/build/broadcast_perf
  21. Compiling reduce_scatter.cu > /data/wubo/paddleocr/env/nccl/nccl-tests-2.13.9/build/reduce_scatter.o
  22. Linking /data/wubo/paddleocr/env/nccl/nccl-tests-2.13.9/build/reduce_scatter.o > /data/wubo/paddleocr/env/nccl/nccl-tests-2.13.9/build/reduce_scatter_perf
  23. Compiling reduce.cu > /data/wubo/paddleocr/env/nccl/nccl-tests-2.13.9/build/reduce.o
  24. Linking /data/wubo/paddleocr/env/nccl/nccl-tests-2.13.9/build/reduce.o > /data/wubo/paddleocr/env/nccl/nccl-tests-2.13.9/build/reduce_perf
  25. Compiling alltoall.cu > /data/wubo/paddleocr/env/nccl/nccl-tests-2.13.9/build/alltoall.o
  26. Linking /data/wubo/paddleocr/env/nccl/nccl-tests-2.13.9/build/alltoall.o > /data/wubo/paddleocr/env/nccl/nccl-tests-2.13.9/build/alltoall_perf
  27. Compiling scatter.cu > /data/wubo/paddleocr/env/nccl/nccl-tests-2.13.9/build/scatter.o
  28. Linking /data/wubo/paddleocr/env/nccl/nccl-tests-2.13.9/build/scatter.o > /data/wubo/paddleocr/env/nccl/nccl-tests-2.13.9/build/scatter_perf
  29. Compiling gather.cu > /data/wubo/paddleocr/env/nccl/nccl-tests-2.13.9/build/gather.o
  30. Linking /data/wubo/paddleocr/env/nccl/nccl-tests-2.13.9/build/gather.o > /data/wubo/paddleocr/env/nccl/nccl-tests-2.13.9/build/gather_perf
  31. Compiling sendrecv.cu > /data/wubo/paddleocr/env/nccl/nccl-tests-2.13.9/build/sendrecv.o
  32. Linking /data/wubo/paddleocr/env/nccl/nccl-tests-2.13.9/build/sendrecv.o > /data/wubo/paddleocr/env/nccl/nccl-tests-2.13.9/build/sendrecv_perf
  33. Compiling hypercube.cu > /data/wubo/paddleocr/env/nccl/nccl-tests-2.13.9/build/hypercube.o
  34. Linking /data/wubo/paddleocr/env/nccl/nccl-tests-2.13.9/build/hypercube.o > /data/wubo/paddleocr/env/nccl/nccl-tests-2.13.9/build/hypercube_perf
  35. make[1]: 离开目录“/data/wubo/paddleocr/env/nccl/nccl-tests-2.13.9/src
  36. (py10_paddlepaddle2.6_paddleocr2.8_cuda12_gpu_wubo) root@jettech-WS-C621E-SAGE-Series:/data/wubo/paddleocr/env/nccl/nccl-tests-2.13.9# ./build/all_reduce_perf -b 8 -e 128M -f 2 -g 8
  37. # nThread 1 nGpus 8 minBytes 8 maxBytes 134217728 step: 2(factor) warmup iters: 5 iters: 20 agg iters: 1 validation: 1 graph: 0
  38. #
  39. # Using devices
  40. jettech-WS-C621E-SAGE-Series: Test CUDA failure common.cu:894 'invalid device ordinal'
  41. .. jettech-WS-C621E-SAGE-Series pid 24945: Test failure common.cu:844
  42. (py10_paddlepaddle2.6_paddleocr2.8_cuda12_gpu_wubo) root@jettech-WS-C621E-SAGE-Series:/data/wubo/paddleocr/env/nccl/nccl-tests-2.13.9# ls build/all_reduce_perf ^C
  43. (py10_paddlepaddle2.6_paddleocr2.8_cuda12_gpu_wubo) root@jettech-WS-C621E-SAGE-Series:/data/wubo/paddleocr/env/nccl/nccl-tests-2.13.9# ./build/all_reduce_perf -b 8 -e 256M -f 2 -g4
  44. # nThread 1 nGpus 4 minBytes 8 maxBytes 268435456 step: 2(factor) warmup iters: 5 iters: 20 agg iters: 1 validation: 1 graph: 0
  45. #
  46. # Using devices
  47. # Rank 0 Group 0 Pid 25570 on jettech-WS-C621E-SAGE-Series device 0 [0x3b] NVIDIA GeForce RTX 2080
  48. # Rank 1 Group 0 Pid 25570 on jettech-WS-C621E-SAGE-Series device 1 [0x5e] NVIDIA GeForce RTX 2080
  49. # Rank 2 Group 0 Pid 25570 on jettech-WS-C621E-SAGE-Series device 2 [0x86] NVIDIA GeForce RTX 2080
  50. # Rank 3 Group 0 Pid 25570 on jettech-WS-C621E-SAGE-Series device 3 [0xaf] NVIDIA GeForce RTX 2080
  51. #
  52. # out-of-place in-place
  53. # size count type redop root time algbw busbw #wrong time algbw busbw #wrong
  54. # (B) (elements) (us) (GB/s) (GB/s) (us) (GB/s) (GB/s)
  55. 8 2 float sum -1 15.71 0.00 0.00 0 15.63 0.00 0.00 0
  56. 16 4 float sum -1 17.28 0.00 0.00 0 15.91 0.00 0.00 0
  57. 32 8 float sum -1 17.18 0.00 0.00 0 16.18 0.00 0.00 0
  58. 64 16 float sum -1 17.14 0.00 0.01 0 15.87 0.00 0.01 0
  59. 128 32 float sum -1 17.09 0.01 0.01 0 16.30 0.01 0.01 0
  60. 256 64 float sum -1 17.23 0.01 0.02 0 15.90 0.02 0.02 0
  61. 512 128 float sum -1 17.28 0.03 0.04 0 16.38 0.03 0.05 0
  62. 1024 256 float sum -1 17.13 0.06 0.09 0 15.81 0.06 0.10 0
  63. 2048 512 float sum -1 17.63 0.12 0.17 0 15.80 0.13 0.19 0
  64. 4096 1024 float sum -1 17.22 0.24 0.36 0 15.99 0.26 0.38 0
  65. 8192 2048 float sum -1 16.61 0.49 0.74 0 16.11 0.51 0.76 0
  66. 16384 4096 float sum -1 18.69 0.88 1.31 0 18.36 0.89 1.34 0
  67. 32768 8192 float sum -1 23.44 1.40 2.10 0 23.02 1.42 2.14 0
  68. 65536 16384 float sum -1 34.72 1.89 2.83 0 34.55 1.90 2.85 0
  69. 131072 32768 float sum -1 63.00 2.08 3.12 0 62.87 2.08 3.13 0
  70. 262144 65536 float sum -1 93.22 2.81 4.22 0 93.98 2.79 4.18 0
  71. 524288 131072 float sum -1 148.2 3.54 5.31 0 148.1 3.54 5.31 0
  72. 1048576 262144 float sum -1 294.1 3.57 5.35 0 289.8 3.62 5.43 0
  73. 2097152 524288 float sum -1 595.3 3.52 5.28 0 592.2 3.54 5.31 0
  74. 4194304 1048576 float sum -1 1319.9 3.18 4.77 0 1317.6 3.18 4.77 0
  75. 8388608 2097152 float sum -1 3014.5 2.78 4.17 0 3100.5 2.71 4.06 0
  76. 16777216 4194304 float sum -1 6966.1 2.41 3.61 0 7025.2 2.39 3.58 0
  77. 33554432 8388608 float sum -1 13814 2.43 3.64 0 13829 2.43 3.64 0
  78. 67108864 16777216 float sum -1 28272 2.37 3.56 0 28100 2.39 3.58 0
  79. 134217728 33554432 float sum -1 55028 2.44 3.66 0 55975 2.40 3.60 0
  80. 268435456 67108864 float sum -1 111871 2.40 3.60 0 111223 2.41 3.62 0
  81. # Out of bounds values : 0 OK
  82. # Avg bus bandwidth : 2.23175
  83. #

5.安装anconda

首先下载Anaconda3
在[清华镜像]下载Linux版本的anaconda
清华镜像官网Anaconda下载

里选择的是Anaconda3-5.0.0-Linux-x86_64.sh

在用户文件夹下新建一个名为anaconda的文件夹,并将刚刚下载的文件放在此文件夹中,执行以下命令:

  1. bash Anaconda3-5.0.0-Linux-x86_64.sh

需要都很多页协议,不断按回车键跳过。
出现询问时就输入yes
之后选择默认的安装目录,按回车确定。
出现询问是否初始化或配置环境变量就输入yes
安装完成。
创建虚拟环境

  1. (py10_paddleocr2.8_gpu_wubo) root@jettech-WS-C621E-SAGE-Series:/data/wubo/paddleocr/env# conda create --name py10_paddleocr2.8_gpu_wubo python=3.10

6. 安装PaddlePaddle

这里参照官网进行安装即可:

  1. (py10_paddleocr2.8_gpu_wubo) root@jettech-WS-C621E-SAGE-Series:/data/wubo/paddleocr/env# python -m pip install paddlepaddle-gpu==2.6.1.post120 -f https://www.paddlepaddle.org.cn/whl/linux/mkl/avx/stable.html

最后进行验证。

使用 python 或 python3 进入python解释器,输入:

GPU版本

  1. import paddle
  2. paddle.utils.run_check()

如果出现PaddlePaddle is installed successfully!,说明您已成功安装。同时会显示当前可以并行使用的GPU数量。

7.安装Pytorch

参照官网命令进行安装:

最后验证安装是否成功。

打开Python,输入以下命令:

  1. import torch
  2. print(torch.cuda.is_available())

8.安装paddleocr客户端 命令行模式


本文转载自: https://blog.csdn.net/Michaelwubo/article/details/140380986
版权归原作者 Michaelwubo 所有, 如有侵权,请联系我们删除。

“AI:paddlepaddle2.6,paddleorc2.8,cuda12,cudnn,nccl,python10环境”的评论:

还没有评论