0


AI大模型探索之路-训练篇21:Llama2微调实战-LoRA技术微调步骤详解

系列篇章💥

AI大模型探索之路-训练篇1:大语言模型微调基础认知
AI大模型探索之路-训练篇2:大语言模型预训练基础认知
AI大模型探索之路-训练篇3:大语言模型全景解读
AI大模型探索之路-训练篇4:大语言模型训练数据集概览
AI大模型探索之路-训练篇5:大语言模型预训练数据准备-词元化
AI大模型探索之路-训练篇6:大语言模型预训练数据准备-预处理
AI大模型探索之路-训练篇7:大语言模型Transformer库之HuggingFace介绍
AI大模型探索之路-训练篇8:大语言模型Transformer库-预训练流程编码体验
AI大模型探索之路-训练篇9:大语言模型Transformer库-Pipeline组件实践
AI大模型探索之路-训练篇10:大语言模型Transformer库-Tokenizer组件实践
AI大模型探索之路-训练篇11:大语言模型Transformer库-Model组件实践
AI大模型探索之路-训练篇12:语言模型Transformer库-Datasets组件实践
AI大模型探索之路-训练篇13:大语言模型Transformer库-Evaluate组件实践
AI大模型探索之路-训练篇14:大语言模型Transformer库-Trainer组件实践
AI大模型探索之路-训练篇15:大语言模型预训练之全量参数微调
AI大模型探索之路-训练篇16:大语言模型预训练-微调技术之LoRA
AI大模型探索之路-训练篇17:大语言模型预训练-微调技术之QLoRA
AI大模型探索之路-训练篇18:大语言模型预训练-微调技术之Prompt Tuning
AI大模型探索之路-训练篇19:大语言模型预训练-微调技术之Prefix Tuning
AI大模型探索之路-训练篇20:大语言模型预训练-常见微调技术对比


目录


前言

在人工智能领域,大型预训练语言模型(Large Language Models, LLMs)已经成为推动自然语言处理(NLP)任务发展的重要力量。Llama2作为其中的一个先进代表,通过其庞大的参数规模和深度学习机制,展现了在多种NLP任务上的卓越性能。然而,为了使Llama2更好地适应特定的应用场景,对其进行微调(Fine-tuning)成为了一个关键步骤。本文将从专业角度出发,详细介绍如何基于LoRA(Low-Rank Adaptation)技术对Llama2进行微调。
在这里插入图片描述

一、Llama2总体概述

Llama2是Meta AI的研究成果(最新版Llama3最近也现世了),这是一个致力于人工智能研究的团队,隶属于Meta公司(即原Facebook公司)。该模型包括7B(70亿参数)、13B(130亿参数)以及70B(700亿参数)三个版本,训练所用的数据集达到了惊人的2万亿tokens。这一大语言模型的开发体现了Meta在AI领域的深入研究和技术积累。

Llama2是继Llama之后的一个大型语言模型,它在原有模型的基础上进行了扩展和优化,以支持更复杂的语言理解和生成任务。Llama2是一个基于Transformer架构的自回归类型大语言模型,Llama2通常具有数十亿甚至数百亿的参数,这些参数通过大量文本数据进行预训练得到,使其具备了广泛的语言知识和强大的语言生成能力。Llama2采用了分层的训练策略,通过预训练、指令微调和任务微调等阶段,使得模型具有较强的泛化能力。
github地址:https://github.com/meta-llama
在这里插入图片描述

Llama2目前开源的有7B、13B、70B,但对中文支持不是特别友好;需要自己使用中文语料进行预训练;也可以选用经过其他大佬微调过的中文变体版;

二、Llama2功能特点

Llama2的功能特点主要体现在以下几个方面:
1)上下文理解:能够理解长篇文本中的复杂语境和细微差别。
2)多任务学习:在预训练阶段就接触了多种任务,使其具备了解决多种NLP问题的能力。
3)生成能力:可以生成连贯、逻辑性强的文本内容。
4)适应性:通过微调,Llama2能够快速适应特定的应用场景和任务需求

三、Llama2微调准备

在对Llama2进行微调之前,需要做好以下准备工作:
1)数据准备:收集并预处理用于微调的数据集,包括文本清洗、标注等。
数据集:https://huggingface.co/datasets/c-s-ale/alpaca-gpt4-data-zh
在这里插入图片描述

2)模型选择:根据任务需求选择合适的Llama2模型版本。
模型地址:https://www.modelscope.cn/models?name=llama2-7b-ms&page=1
在这里插入图片描述

模型下载方式1

git clone https://www.modelscope.cn/Llama-2-7b-ms.git

模型下载方式2

from modelscope import snapshot_download
snapshot_download(mode_id='Llama-2-7b-ms',cache_dir=”./”)

ModelScope(魔搭)说明:
在这里插入图片描述

ModelScope是一个模型服务平台,为国内AI开发者提供了丰富的资源和便利的服务;

类似HuggingFace;如果网络受限无法使用HuggingFace,可以选择从ModelScope下载相关模型资源;

ModelScope平台涵盖了自然语言处理、图像、语音、多模态和科学计算等五大AI领域,并提供了一套支持模型高效推理、训练评估及导出的Python Library。ModelScope通过提供易用的工具和资源,使得开发者能够更加简单地应用AI模型技术于实际问题解决中。此外,ModelScope还汇聚了众多优秀的国产模型资源,为开发者提供了更多的选择,并且鼓励开发者贡献自己的模型,从而促进了国内AI模型的共享和交流。

四、Llama2微调实战

模型:Llama-2
数据集:alpaca-gpt4-data-zh
微调技术:LoRA
使用资源:半精度 fp16(这里是为了减少GPU资源;正常情况默认微调时是全精度32位浮点数)

学术资源加速

方便从huggingface下载模型,这云平台autodl提供的,仅适用于autodl。

import subprocess
import os

result = subprocess.run('bash -c "source /etc/network_turbo && env | grep proxy"', shell=True, capture_output=True, text=True)
output = result.stdout
for line in output.splitlines():if'='in line:
        var, value = line.split('=',1)
        os.environ[var]= value

步骤1 导入相关包

开始之前,我们需要导入适用于模型训练和推理的必要库,如transformers。

from datasets import Dataset
from transformers import AutoTokenizer, AutoModelForCausalLM, DataCollatorForSeq2Seq, TrainingArguments, Trainer

步骤2 加载数据集

使用适当的数据加载器,例如datasets库,来加载预处理过的指令遵循性任务数据集。

ds = Dataset.load_from_disk("/root/PEFT代码/tuning/lesson01/data/alpaca_data_zh")
ds

输出:

Dataset({
    features:['output','input','instruction'],
    num_rows:26858})

查看数据

ds[:3]

输出:

{'output':['以下是保持健康的三个提示:\n\n1. 保持身体活动。每天做适当的身体运动,如散步、跑步或游泳,能促进心血管健康,增强肌肉力量,并有助于减少体重。\n\n2. 均衡饮食。每天食用新鲜的蔬菜、水果、全谷物和脂肪含量低的蛋白质食物,避免高糖、高脂肪和加工食品,以保持健康的饮食习惯。\n\n3. 睡眠充足。睡眠对人体健康至关重要,成年人每天应保证 7-8 小时的睡眠。良好的睡眠有助于减轻压力,促进身体恢复,并提高注意力和记忆力。','4/16等于1/4是因为我们可以约分分子分母都除以他们的最大公约数4,得到(4÷4)/ (16÷4)=1/4。分数的约分是用分子和分母除以相同的非零整数,来表示分数的一个相同的值,这因为分数实际上表示了分子除以分母,所以即使两个数同时除以同一个非零整数,分数的值也不会改变。所以4/16 和1/4是两种不同的书写形式,但它们的值相等。','朱利叶斯·凯撒,又称尤利乌斯·恺撒(Julius Caesar)是古罗马的政治家、军事家和作家。他于公元前44年3月15日被刺杀。 \n\n根据历史记载,当时罗马元老院里一些参议员联合起来策划了对恺撒的刺杀行动,因为他们担心恺撒的统治将给罗马共和制带来威胁。在公元前44年3月15日(又称“3月的艾达之日”),恺撒去参加元老院会议时,被一群参议员包围并被攻击致死。据记载,他身中23刀,其中一刀最终致命。'],'input':['','输入:4/16',''],'instruction':['保持健康的三个提示。','解释为什么以下分数等同于1/4','朱利叶斯·凯撒是如何死亡的?']}

步骤3 数据集预处理

利用预训练模型的分词器(Tokenizer)对原始文本进行编码,并生成相应的输入ID、注意力掩码和标签。

1)获取分词器

#加载本地模型,提前下载到本地
tokenizer = AutoTokenizer.from_pretrained("/root/autodl-tmp/Llama-2-7b-ms")
tokenizer

输出:

LlamaTokenizerFast(name_or_path='/root/autodl-tmp/Llama-2-7b-ms', vocab_size=32000, model_max_length=1000000000000000019884624838656, is_fast=True, padding_side='left', truncation_side='right', special_tokens={'bos_token':'<s>','eos_token':'</s>','unk_token':'<unk>','pad_token':'<unk>'}, clean_up_tokenization_spaces=False),  added_tokens_decoder={0: AddedToken("<unk>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=True),1: AddedToken("<s>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=True),2: AddedToken("</s>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=True),32000: AddedToken("<pad>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False),}

2)对齐设置

padding_side模式左对齐,需要修改改为右边对齐

tokenizer.padding_side ="right"

对齐填充设置为结束符的token (eos_token_id)

tokenizer.pad_token_id =2

3)定义数据处理函数

defprocess_func(example):
    MAX_LENGTH =400
    input_ids, attention_mask, labels =[],[],[]
    instruction = tokenizer("\n".join(["Human: "+ example["instruction"], example["input"]]).strip()+"\n\nAssistant: ", add_special_tokens=False)
    response = tokenizer(example["output"], add_special_tokens=False)
    input_ids = instruction["input_ids"]+ response["input_ids"]+[tokenizer.eos_token_id]
    attention_mask = instruction["attention_mask"]+ response["attention_mask"]+[1]
    labels =[-100]*len(instruction["input_ids"])+ response["input_ids"]+[tokenizer.eos_token_id]iflen(input_ids)> MAX_LENGTH:
        input_ids = input_ids[:MAX_LENGTH]
        attention_mask = attention_mask[:MAX_LENGTH]
        labels = labels[:MAX_LENGTH]return{"input_ids": input_ids,"attention_mask": attention_mask,"labels": labels
    }

4)对数据进行预处理

tokenized_ds = ds.map(process_func, remove_columns=ds.column_names)
tokenized_ds

输出:

Dataset({
    features:['input_ids','attention_mask','labels'],
    num_rows:26858})

5)打印查看inpu_ids

print(tokenized_ds[0]["input_ids"])

输出:

[12968,29901,29871,30982,31695,31863,31577,30210,30457,30502,31302,30858,30267,13,13,7900,22137,29901,29871,29871,30651,30557,30392,30982,31695,31863,31577,30210,30457,30502,31302,30858,30383,13,13,29896,29889,29871,30982,31695,31687,30988,31704,30846,30267,31951,30408,232,132,157,236,131,133,30948,30210,31687,30988,31894,30846,30214,30847,233,152,166,233,176,168,30330,235,186,148,233,176,168,31391,233,187,187,233,182,182,30214,30815,231,194,134,31174,30869,235,164,131,31624,31863,31577,30214,232,165,161,232,191,189,235,133,143,235,133,140,31074,31180,30214,31666,30417,31931,30909,232,138,146,31022,30988,30908,30267,13,13,29906,29889,29871,232,160,138,235,164,164,236,168,177,31855,30267,31951,30408,31855,30406,30374,236,181,159,30210,235,151,175,31854,30330,30716,30801,30330,30753,31112,30834,30503,235,135,133,235,133,173,232,147,174,31180,231,192,145,30210,235,158,142,30868,235,183,171,31855,30834,30214,236,132,194,232,136,144,30528,234,182,153,30330,30528,235,135,133,235,133,173,30503,30666,31041,31855,31399,30214,30651,30982,31695,31863,31577,30210,236,168,177,31855,231,188,163,233,134,178,30267,13,13,29941,29889,29871,234,160,164,234,159,163,232,136,136,31722,30267,234,160,164,234,159,163,30783,30313,30988,31863,31577,235,138,182,31057,30908,30698,30214,30494,30470,30313,31951,30408,31370,30982,235,178,132,29871,29955,29899,29947,29871,30446,30594,30210,234,160,164,234,159,163,30267,31400,31076,30210,234,160,164,234,159,163,30417,31931,30909,232,138,146,235,192,190,232,145,142,31074,30214,231,194,134,31174,31687,30988,233,132,165,31810,30214,31666,31302,30528,31368,31474,31074,30503,31410,232,194,137,31074,30267,2]

6)检查数据(是否包含结束符)

tokenizer.decode(list(filter(lambda x: x !=-100, tokenized_ds[1]["labels"])))

输出:

'4/16等于1/4是因为我们可以约分分子分母都除以他们的最大公约数4,得到(4÷4)/ (16÷4)=1/4。分数的约分是用分子和分母除以相同的非零整数,来表示分数的一个相同的值,这因为分数实际上表示了分子除以分母,所以即使两个数同时除以同一个非零整数,分数的值也不会改变。所以4/16 和1/4是两种不同的书写形式,但它们的值相等。</s>'

步骤4 创建模型

然后,我们实例化一个预训练模型,这个模型将作为微调的基础。对于大型模型,我们可能还需要进行一些特定的配置,以适应可用的计算资源。(这里设置为半精度torch_dtype=torch.half,)

import torch
model = AutoModelForCausalLM.from_pretrained("/root/autodl-tmp/Llama-2-7b-ms", 
                                             low_cpu_mem_usage=True,
                                             torch_dtype=torch.half,
                                             device_map="auto")

精度查看

model.dtype

输出:

torch.float16
下面2个部分是LoRA相关的配置。

1、PEFT 步骤1 配置文件

在使用PEFT进行微调时,我们首先需要创建一个配置文件,该文件定义了微调过程中的各种设置,如学习率调度、优化器选择等。
提前安装peft:pip install peft

from peft import LoraConfig, TaskType, get_peft_model

config = LoraConfig(task_type=TaskType.CAUSAL_LM,)
config

输出:

LoraConfig(peft_type=<PeftType.LORA:'LORA'>, auto_mapping=None, base_model_name_or_path=None, revision=None, task_type=<TaskType.CAUSAL_LM:'CAUSAL_LM'>, inference_mode=False, r=8, target_modules=None, lora_alpha=8, lora_dropout=0.0, fan_in_fan_out=False, bias='none', use_rslora=False, modules_to_save=None, init_lora_weights=True, layers_to_transform=None, layers_pattern=None, rank_pattern={}, alpha_pattern={}, megatron_config=None, megatron_core='megatron.core', loftq_config={}, use_dora=False, layer_replication=None)

2、PEFT 步骤2 创建模型

接下来,我们使用PEFT和预训练模型来创建一个微调模型。这个模型将包含原始的预训练模型以及由PEFT引入的低秩参数。

model = get_peft_model(model, config)
config

输出:

LoraConfig(peft_type=<PeftType.LORA:'LORA'>, auto_mapping=None, base_model_name_or_path='/root/autodl-tmp/Llama-2-7b-ms', revision=None, task_type=<TaskType.CAUSAL_LM:'CAUSAL_LM'>, inference_mode=False, r=8, target_modules={'q_proj','v_proj'}, lora_alpha=8, lora_dropout=0.0, fan_in_fan_out=False, bias='none', use_rslora=False, modules_to_save=None, init_lora_weights=True, layers_to_transform=None, layers_pattern=None, rank_pattern={}, alpha_pattern={}, megatron_config=None, megatron_core='megatron.core', loftq_config={}, use_dora=False, layer_replication=None)

查看模型中可训练参数的数量

model.print_trainable_parameters()#打印出模型中可训练参数的数量

输出:

trainable params:4,194,304||all params:6,742,609,920|| trainable%:0.06220594176090199

查看模型参数,查看LoRA层添加到哪

for name, param in model.named_parameters():print(name, param.shape, param.dtype)

输出:

base_model.model.model.embed_tokens.weight torch.Size([32000,4096]) torch.float16
base_model.model.model.layers.0.self_attn.q_proj.base_layer.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.0.self_attn.q_proj.lora_A.default.weight torch.Size([8,4096]) torch.float16
base_model.model.model.layers.0.self_attn.q_proj.lora_B.default.weight torch.Size([4096,8]) torch.float16
base_model.model.model.layers.0.self_attn.k_proj.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.0.self_attn.v_proj.base_layer.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.0.self_attn.v_proj.lora_A.default.weight torch.Size([8,4096]) torch.float16
base_model.model.model.layers.0.self_attn.v_proj.lora_B.default.weight torch.Size([4096,8]) torch.float16
base_model.model.model.layers.0.self_attn.o_proj.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.0.mlp.gate_proj.weight torch.Size([11008,4096]) torch.float16
base_model.model.model.layers.0.mlp.up_proj.weight torch.Size([11008,4096]) torch.float16
base_model.model.model.layers.0.mlp.down_proj.weight torch.Size([4096,11008]) torch.float16
base_model.model.model.layers.0.input_layernorm.weight torch.Size([4096]) torch.float16
base_model.model.model.layers.0.post_attention_layernorm.weight torch.Size([4096]) torch.float16
base_model.model.model.layers.1.self_attn.q_proj.base_layer.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.1.self_attn.q_proj.lora_A.default.weight torch.Size([8,4096]) torch.float16
base_model.model.model.layers.1.self_attn.q_proj.lora_B.default.weight torch.Size([4096,8]) torch.float16
base_model.model.model.layers.1.self_attn.k_proj.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.1.self_attn.v_proj.base_layer.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.1.self_attn.v_proj.lora_A.default.weight torch.Size([8,4096]) torch.float16
base_model.model.model.layers.1.self_attn.v_proj.lora_B.default.weight torch.Size([4096,8]) torch.float16
base_model.model.model.layers.1.self_attn.o_proj.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.1.mlp.gate_proj.weight torch.Size([11008,4096]) torch.float16
base_model.model.model.layers.1.mlp.up_proj.weight torch.Size([11008,4096]) torch.float16
base_model.model.model.layers.1.mlp.down_proj.weight torch.Size([4096,11008]) torch.float16
base_model.model.model.layers.1.input_layernorm.weight torch.Size([4096]) torch.float16
base_model.model.model.layers.1.post_attention_layernorm.weight torch.Size([4096]) torch.float16
base_model.model.model.layers.2.self_attn.q_proj.base_layer.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.2.self_attn.q_proj.lora_A.default.weight torch.Size([8,4096]) torch.float16
base_model.model.model.layers.2.self_attn.q_proj.lora_B.default.weight torch.Size([4096,8]) torch.float16
base_model.model.model.layers.2.self_attn.k_proj.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.2.self_attn.v_proj.base_layer.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.2.self_attn.v_proj.lora_A.default.weight torch.Size([8,4096]) torch.float16
base_model.model.model.layers.2.self_attn.v_proj.lora_B.default.weight torch.Size([4096,8]) torch.float16
base_model.model.model.layers.2.self_attn.o_proj.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.2.mlp.gate_proj.weight torch.Size([11008,4096]) torch.float16
base_model.model.model.layers.2.mlp.up_proj.weight torch.Size([11008,4096]) torch.float16
base_model.model.model.layers.2.mlp.down_proj.weight torch.Size([4096,11008]) torch.float16
base_model.model.model.layers.2.input_layernorm.weight torch.Size([4096]) torch.float16
base_model.model.model.layers.2.post_attention_layernorm.weight torch.Size([4096]) torch.float16
base_model.model.model.layers.3.self_attn.q_proj.base_layer.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.3.self_attn.q_proj.lora_A.default.weight torch.Size([8,4096]) torch.float16
base_model.model.model.layers.3.self_attn.q_proj.lora_B.default.weight torch.Size([4096,8]) torch.float16
base_model.model.model.layers.3.self_attn.k_proj.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.3.self_attn.v_proj.base_layer.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.3.self_attn.v_proj.lora_A.default.weight torch.Size([8,4096]) torch.float16
base_model.model.model.layers.3.self_attn.v_proj.lora_B.default.weight torch.Size([4096,8]) torch.float16
base_model.model.model.layers.3.self_attn.o_proj.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.3.mlp.gate_proj.weight torch.Size([11008,4096]) torch.float16
base_model.model.model.layers.3.mlp.up_proj.weight torch.Size([11008,4096]) torch.float16
base_model.model.model.layers.3.mlp.down_proj.weight torch.Size([4096,11008]) torch.float16
base_model.model.model.layers.3.input_layernorm.weight torch.Size([4096]) torch.float16
base_model.model.model.layers.3.post_attention_layernorm.weight torch.Size([4096]) torch.float16
base_model.model.model.layers.4.self_attn.q_proj.base_layer.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.4.self_attn.q_proj.lora_A.default.weight torch.Size([8,4096]) torch.float16
base_model.model.model.layers.4.self_attn.q_proj.lora_B.default.weight torch.Size([4096,8]) torch.float16
base_model.model.model.layers.4.self_attn.k_proj.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.4.self_attn.v_proj.base_layer.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.4.self_attn.v_proj.lora_A.default.weight torch.Size([8,4096]) torch.float16
base_model.model.model.layers.4.self_attn.v_proj.lora_B.default.weight torch.Size([4096,8]) torch.float16
base_model.model.model.layers.4.self_attn.o_proj.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.4.mlp.gate_proj.weight torch.Size([11008,4096]) torch.float16
base_model.model.model.layers.4.mlp.up_proj.weight torch.Size([11008,4096]) torch.float16
base_model.model.model.layers.4.mlp.down_proj.weight torch.Size([4096,11008]) torch.float16
base_model.model.model.layers.4.input_layernorm.weight torch.Size([4096]) torch.float16
base_model.model.model.layers.4.post_attention_layernorm.weight torch.Size([4096]) torch.float16
base_model.model.model.layers.5.self_attn.q_proj.base_layer.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.5.self_attn.q_proj.lora_A.default.weight torch.Size([8,4096]) torch.float16
base_model.model.model.layers.5.self_attn.q_proj.lora_B.default.weight torch.Size([4096,8]) torch.float16
base_model.model.model.layers.5.self_attn.k_proj.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.5.self_attn.v_proj.base_layer.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.5.self_attn.v_proj.lora_A.default.weight torch.Size([8,4096]) torch.float16
base_model.model.model.layers.5.self_attn.v_proj.lora_B.default.weight torch.Size([4096,8]) torch.float16
base_model.model.model.layers.5.self_attn.o_proj.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.5.mlp.gate_proj.weight torch.Size([11008,4096]) torch.float16
base_model.model.model.layers.5.mlp.up_proj.weight torch.Size([11008,4096]) torch.float16
base_model.model.model.layers.5.mlp.down_proj.weight torch.Size([4096,11008]) torch.float16
base_model.model.model.layers.5.input_layernorm.weight torch.Size([4096]) torch.float16
base_model.model.model.layers.5.post_attention_layernorm.weight torch.Size([4096]) torch.float16
base_model.model.model.layers.6.self_attn.q_proj.base_layer.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.6.self_attn.q_proj.lora_A.default.weight torch.Size([8,4096]) torch.float16
base_model.model.model.layers.6.self_attn.q_proj.lora_B.default.weight torch.Size([4096,8]) torch.float16
base_model.model.model.layers.6.self_attn.k_proj.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.6.self_attn.v_proj.base_layer.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.6.self_attn.v_proj.lora_A.default.weight torch.Size([8,4096]) torch.float16
base_model.model.model.layers.6.self_attn.v_proj.lora_B.default.weight torch.Size([4096,8]) torch.float16
base_model.model.model.layers.6.self_attn.o_proj.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.6.mlp.gate_proj.weight torch.Size([11008,4096]) torch.float16
base_model.model.model.layers.6.mlp.up_proj.weight torch.Size([11008,4096]) torch.float16
base_model.model.model.layers.6.mlp.down_proj.weight torch.Size([4096,11008]) torch.float16
base_model.model.model.layers.6.input_layernorm.weight torch.Size([4096]) torch.float16
base_model.model.model.layers.6.post_attention_layernorm.weight torch.Size([4096]) torch.float16
base_model.model.model.layers.7.self_attn.q_proj.base_layer.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.7.self_attn.q_proj.lora_A.default.weight torch.Size([8,4096]) torch.float16
base_model.model.model.layers.7.self_attn.q_proj.lora_B.default.weight torch.Size([4096,8]) torch.float16
base_model.model.model.layers.7.self_attn.k_proj.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.7.self_attn.v_proj.base_layer.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.7.self_attn.v_proj.lora_A.default.weight torch.Size([8,4096]) torch.float16
base_model.model.model.layers.7.self_attn.v_proj.lora_B.default.weight torch.Size([4096,8]) torch.float16
base_model.model.model.layers.7.self_attn.o_proj.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.7.mlp.gate_proj.weight torch.Size([11008,4096]) torch.float16
base_model.model.model.layers.7.mlp.up_proj.weight torch.Size([11008,4096]) torch.float16
base_model.model.model.layers.7.mlp.down_proj.weight torch.Size([4096,11008]) torch.float16
base_model.model.model.layers.7.input_layernorm.weight torch.Size([4096]) torch.float16
base_model.model.model.layers.7.post_attention_layernorm.weight torch.Size([4096]) torch.float16
base_model.model.model.layers.8.self_attn.q_proj.base_layer.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.8.self_attn.q_proj.lora_A.default.weight torch.Size([8,4096]) torch.float16
base_model.model.model.layers.8.self_attn.q_proj.lora_B.default.weight torch.Size([4096,8]) torch.float16
base_model.model.model.layers.8.self_attn.k_proj.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.8.self_attn.v_proj.base_layer.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.8.self_attn.v_proj.lora_A.default.weight torch.Size([8,4096]) torch.float16
base_model.model.model.layers.8.self_attn.v_proj.lora_B.default.weight torch.Size([4096,8]) torch.float16
base_model.model.model.layers.8.self_attn.o_proj.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.8.mlp.gate_proj.weight torch.Size([11008,4096]) torch.float16
base_model.model.model.layers.8.mlp.up_proj.weight torch.Size([11008,4096]) torch.float16
base_model.model.model.layers.8.mlp.down_proj.weight torch.Size([4096,11008]) torch.float16
base_model.model.model.layers.8.input_layernorm.weight torch.Size([4096]) torch.float16
base_model.model.model.layers.8.post_attention_layernorm.weight torch.Size([4096]) torch.float16
base_model.model.model.layers.9.self_attn.q_proj.base_layer.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.9.self_attn.q_proj.lora_A.default.weight torch.Size([8,4096]) torch.float16
base_model.model.model.layers.9.self_attn.q_proj.lora_B.default.weight torch.Size([4096,8]) torch.float16
base_model.model.model.layers.9.self_attn.k_proj.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.9.self_attn.v_proj.base_layer.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.9.self_attn.v_proj.lora_A.default.weight torch.Size([8,4096]) torch.float16
base_model.model.model.layers.9.self_attn.v_proj.lora_B.default.weight torch.Size([4096,8]) torch.float16
base_model.model.model.layers.9.self_attn.o_proj.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.9.mlp.gate_proj.weight torch.Size([11008,4096]) torch.float16
base_model.model.model.layers.9.mlp.up_proj.weight torch.Size([11008,4096]) torch.float16
base_model.model.model.layers.9.mlp.down_proj.weight torch.Size([4096,11008]) torch.float16
base_model.model.model.layers.9.input_layernorm.weight torch.Size([4096]) torch.float16
base_model.model.model.layers.9.post_attention_layernorm.weight torch.Size([4096]) torch.float16
base_model.model.model.layers.10.self_attn.q_proj.base_layer.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.10.self_attn.q_proj.lora_A.default.weight torch.Size([8,4096]) torch.float16
base_model.model.model.layers.10.self_attn.q_proj.lora_B.default.weight torch.Size([4096,8]) torch.float16
base_model.model.model.layers.10.self_attn.k_proj.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.10.self_attn.v_proj.base_layer.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.10.self_attn.v_proj.lora_A.default.weight torch.Size([8,4096]) torch.float16
base_model.model.model.layers.10.self_attn.v_proj.lora_B.default.weight torch.Size([4096,8]) torch.float16
base_model.model.model.layers.10.self_attn.o_proj.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.10.mlp.gate_proj.weight torch.Size([11008,4096]) torch.float16
base_model.model.model.layers.10.mlp.up_proj.weight torch.Size([11008,4096]) torch.float16
base_model.model.model.layers.10.mlp.down_proj.weight torch.Size([4096,11008]) torch.float16
base_model.model.model.layers.10.input_layernorm.weight torch.Size([4096]) torch.float16
base_model.model.model.layers.10.post_attention_layernorm.weight torch.Size([4096]) torch.float16
base_model.model.model.layers.11.self_attn.q_proj.base_layer.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.11.self_attn.q_proj.lora_A.default.weight torch.Size([8,4096]) torch.float16
base_model.model.model.layers.11.self_attn.q_proj.lora_B.default.weight torch.Size([4096,8]) torch.float16
base_model.model.model.layers.11.self_attn.k_proj.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.11.self_attn.v_proj.base_layer.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.11.self_attn.v_proj.lora_A.default.weight torch.Size([8,4096]) torch.float16
base_model.model.model.layers.11.self_attn.v_proj.lora_B.default.weight torch.Size([4096,8]) torch.float16
base_model.model.model.layers.11.self_attn.o_proj.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.11.mlp.gate_proj.weight torch.Size([11008,4096]) torch.float16
base_model.model.model.layers.11.mlp.up_proj.weight torch.Size([11008,4096]) torch.float16
base_model.model.model.layers.11.mlp.down_proj.weight torch.Size([4096,11008]) torch.float16
base_model.model.model.layers.11.input_layernorm.weight torch.Size([4096]) torch.float16
base_model.model.model.layers.11.post_attention_layernorm.weight torch.Size([4096]) torch.float16
base_model.model.model.layers.12.self_attn.q_proj.base_layer.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.12.self_attn.q_proj.lora_A.default.weight torch.Size([8,4096]) torch.float16
base_model.model.model.layers.12.self_attn.q_proj.lora_B.default.weight torch.Size([4096,8]) torch.float16
base_model.model.model.layers.12.self_attn.k_proj.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.12.self_attn.v_proj.base_layer.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.12.self_attn.v_proj.lora_A.default.weight torch.Size([8,4096]) torch.float16
base_model.model.model.layers.12.self_attn.v_proj.lora_B.default.weight torch.Size([4096,8]) torch.float16
base_model.model.model.layers.12.self_attn.o_proj.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.12.mlp.gate_proj.weight torch.Size([11008,4096]) torch.float16
base_model.model.model.layers.12.mlp.up_proj.weight torch.Size([11008,4096]) torch.float16
base_model.model.model.layers.12.mlp.down_proj.weight torch.Size([4096,11008]) torch.float16
base_model.model.model.layers.12.input_layernorm.weight torch.Size([4096]) torch.float16
base_model.model.model.layers.12.post_attention_layernorm.weight torch.Size([4096]) torch.float16
base_model.model.model.layers.13.self_attn.q_proj.base_layer.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.13.self_attn.q_proj.lora_A.default.weight torch.Size([8,4096]) torch.float16
base_model.model.model.layers.13.self_attn.q_proj.lora_B.default.weight torch.Size([4096,8]) torch.float16
base_model.model.model.layers.13.self_attn.k_proj.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.13.self_attn.v_proj.base_layer.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.13.self_attn.v_proj.lora_A.default.weight torch.Size([8,4096]) torch.float16
base_model.model.model.layers.13.self_attn.v_proj.lora_B.default.weight torch.Size([4096,8]) torch.float16
base_model.model.model.layers.13.self_attn.o_proj.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.13.mlp.gate_proj.weight torch.Size([11008,4096]) torch.float16
base_model.model.model.layers.13.mlp.up_proj.weight torch.Size([11008,4096]) torch.float16
base_model.model.model.layers.13.mlp.down_proj.weight torch.Size([4096,11008]) torch.float16
base_model.model.model.layers.13.input_layernorm.weight torch.Size([4096]) torch.float16
base_model.model.model.layers.13.post_attention_layernorm.weight torch.Size([4096]) torch.float16
base_model.model.model.layers.14.self_attn.q_proj.base_layer.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.14.self_attn.q_proj.lora_A.default.weight torch.Size([8,4096]) torch.float16
base_model.model.model.layers.14.self_attn.q_proj.lora_B.default.weight torch.Size([4096,8]) torch.float16
base_model.model.model.layers.14.self_attn.k_proj.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.14.self_attn.v_proj.base_layer.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.14.self_attn.v_proj.lora_A.default.weight torch.Size([8,4096]) torch.float16
base_model.model.model.layers.14.self_attn.v_proj.lora_B.default.weight torch.Size([4096,8]) torch.float16
base_model.model.model.layers.14.self_attn.o_proj.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.14.mlp.gate_proj.weight torch.Size([11008,4096]) torch.float16
base_model.model.model.layers.14.mlp.up_proj.weight torch.Size([11008,4096]) torch.float16
base_model.model.model.layers.14.mlp.down_proj.weight torch.Size([4096,11008]) torch.float16
base_model.model.model.layers.14.input_layernorm.weight torch.Size([4096]) torch.float16
base_model.model.model.layers.14.post_attention_layernorm.weight torch.Size([4096]) torch.float16
base_model.model.model.layers.15.self_attn.q_proj.base_layer.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.15.self_attn.q_proj.lora_A.default.weight torch.Size([8,4096]) torch.float16
base_model.model.model.layers.15.self_attn.q_proj.lora_B.default.weight torch.Size([4096,8]) torch.float16
base_model.model.model.layers.15.self_attn.k_proj.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.15.self_attn.v_proj.base_layer.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.15.self_attn.v_proj.lora_A.default.weight torch.Size([8,4096]) torch.float16
base_model.model.model.layers.15.self_attn.v_proj.lora_B.default.weight torch.Size([4096,8]) torch.float16
base_model.model.model.layers.15.self_attn.o_proj.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.15.mlp.gate_proj.weight torch.Size([11008,4096]) torch.float16
base_model.model.model.layers.15.mlp.up_proj.weight torch.Size([11008,4096]) torch.float16
base_model.model.model.layers.15.mlp.down_proj.weight torch.Size([4096,11008]) torch.float16
base_model.model.model.layers.15.input_layernorm.weight torch.Size([4096]) torch.float16
base_model.model.model.layers.15.post_attention_layernorm.weight torch.Size([4096]) torch.float16
base_model.model.model.layers.16.self_attn.q_proj.base_layer.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.16.self_attn.q_proj.lora_A.default.weight torch.Size([8,4096]) torch.float16
base_model.model.model.layers.16.self_attn.q_proj.lora_B.default.weight torch.Size([4096,8]) torch.float16
base_model.model.model.layers.16.self_attn.k_proj.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.16.self_attn.v_proj.base_layer.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.16.self_attn.v_proj.lora_A.default.weight torch.Size([8,4096]) torch.float16
base_model.model.model.layers.16.self_attn.v_proj.lora_B.default.weight torch.Size([4096,8]) torch.float16
base_model.model.model.layers.16.self_attn.o_proj.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.16.mlp.gate_proj.weight torch.Size([11008,4096]) torch.float16
base_model.model.model.layers.16.mlp.up_proj.weight torch.Size([11008,4096]) torch.float16
base_model.model.model.layers.16.mlp.down_proj.weight torch.Size([4096,11008]) torch.float16
base_model.model.model.layers.16.input_layernorm.weight torch.Size([4096]) torch.float16
base_model.model.model.layers.16.post_attention_layernorm.weight torch.Size([4096]) torch.float16
base_model.model.model.layers.17.self_attn.q_proj.base_layer.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.17.self_attn.q_proj.lora_A.default.weight torch.Size([8,4096]) torch.float16
base_model.model.model.layers.17.self_attn.q_proj.lora_B.default.weight torch.Size([4096,8]) torch.float16
base_model.model.model.layers.17.self_attn.k_proj.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.17.self_attn.v_proj.base_layer.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.17.self_attn.v_proj.lora_A.default.weight torch.Size([8,4096]) torch.float16
base_model.model.model.layers.17.self_attn.v_proj.lora_B.default.weight torch.Size([4096,8]) torch.float16
base_model.model.model.layers.17.self_attn.o_proj.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.17.mlp.gate_proj.weight torch.Size([11008,4096]) torch.float16
base_model.model.model.layers.17.mlp.up_proj.weight torch.Size([11008,4096]) torch.float16
base_model.model.model.layers.17.mlp.down_proj.weight torch.Size([4096,11008]) torch.float16
base_model.model.model.layers.17.input_layernorm.weight torch.Size([4096]) torch.float16
base_model.model.model.layers.17.post_attention_layernorm.weight torch.Size([4096]) torch.float16
base_model.model.model.layers.18.self_attn.q_proj.base_layer.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.18.self_attn.q_proj.lora_A.default.weight torch.Size([8,4096]) torch.float16
base_model.model.model.layers.18.self_attn.q_proj.lora_B.default.weight torch.Size([4096,8]) torch.float16
base_model.model.model.layers.18.self_attn.k_proj.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.18.self_attn.v_proj.base_layer.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.18.self_attn.v_proj.lora_A.default.weight torch.Size([8,4096]) torch.float16
base_model.model.model.layers.18.self_attn.v_proj.lora_B.default.weight torch.Size([4096,8]) torch.float16
base_model.model.model.layers.18.self_attn.o_proj.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.18.mlp.gate_proj.weight torch.Size([11008,4096]) torch.float16
base_model.model.model.layers.18.mlp.up_proj.weight torch.Size([11008,4096]) torch.float16
base_model.model.model.layers.18.mlp.down_proj.weight torch.Size([4096,11008]) torch.float16
base_model.model.model.layers.18.input_layernorm.weight torch.Size([4096]) torch.float16
base_model.model.model.layers.18.post_attention_layernorm.weight torch.Size([4096]) torch.float16
base_model.model.model.layers.19.self_attn.q_proj.base_layer.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.19.self_attn.q_proj.lora_A.default.weight torch.Size([8,4096]) torch.float16
base_model.model.model.layers.19.self_attn.q_proj.lora_B.default.weight torch.Size([4096,8]) torch.float16
base_model.model.model.layers.19.self_attn.k_proj.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.19.self_attn.v_proj.base_layer.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.19.self_attn.v_proj.lora_A.default.weight torch.Size([8,4096]) torch.float16
base_model.model.model.layers.19.self_attn.v_proj.lora_B.default.weight torch.Size([4096,8]) torch.float16
base_model.model.model.layers.19.self_attn.o_proj.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.19.mlp.gate_proj.weight torch.Size([11008,4096]) torch.float16
base_model.model.model.layers.19.mlp.up_proj.weight torch.Size([11008,4096]) torch.float16
base_model.model.model.layers.19.mlp.down_proj.weight torch.Size([4096,11008]) torch.float16
base_model.model.model.layers.19.input_layernorm.weight torch.Size([4096]) torch.float16
base_model.model.model.layers.19.post_attention_layernorm.weight torch.Size([4096]) torch.float16
base_model.model.model.layers.20.self_attn.q_proj.base_layer.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.20.self_attn.q_proj.lora_A.default.weight torch.Size([8,4096]) torch.float16
base_model.model.model.layers.20.self_attn.q_proj.lora_B.default.weight torch.Size([4096,8]) torch.float16
base_model.model.model.layers.20.self_attn.k_proj.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.20.self_attn.v_proj.base_layer.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.20.self_attn.v_proj.lora_A.default.weight torch.Size([8,4096]) torch.float16
base_model.model.model.layers.20.self_attn.v_proj.lora_B.default.weight torch.Size([4096,8]) torch.float16
base_model.model.model.layers.20.self_attn.o_proj.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.20.mlp.gate_proj.weight torch.Size([11008,4096]) torch.float16
base_model.model.model.layers.20.mlp.up_proj.weight torch.Size([11008,4096]) torch.float16
base_model.model.model.layers.20.mlp.down_proj.weight torch.Size([4096,11008]) torch.float16
base_model.model.model.layers.20.input_layernorm.weight torch.Size([4096]) torch.float16
base_model.model.model.layers.20.post_attention_layernorm.weight torch.Size([4096]) torch.float16
base_model.model.model.layers.21.self_attn.q_proj.base_layer.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.21.self_attn.q_proj.lora_A.default.weight torch.Size([8,4096]) torch.float16
base_model.model.model.layers.21.self_attn.q_proj.lora_B.default.weight torch.Size([4096,8]) torch.float16
base_model.model.model.layers.21.self_attn.k_proj.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.21.self_attn.v_proj.base_layer.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.21.self_attn.v_proj.lora_A.default.weight torch.Size([8,4096]) torch.float16
base_model.model.model.layers.21.self_attn.v_proj.lora_B.default.weight torch.Size([4096,8]) torch.float16
base_model.model.model.layers.21.self_attn.o_proj.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.21.mlp.gate_proj.weight torch.Size([11008,4096]) torch.float16
base_model.model.model.layers.21.mlp.up_proj.weight torch.Size([11008,4096]) torch.float16
base_model.model.model.layers.21.mlp.down_proj.weight torch.Size([4096,11008]) torch.float16
base_model.model.model.layers.21.input_layernorm.weight torch.Size([4096]) torch.float16
base_model.model.model.layers.21.post_attention_layernorm.weight torch.Size([4096]) torch.float16
base_model.model.model.layers.22.self_attn.q_proj.base_layer.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.22.self_attn.q_proj.lora_A.default.weight torch.Size([8,4096]) torch.float16
base_model.model.model.layers.22.self_attn.q_proj.lora_B.default.weight torch.Size([4096,8]) torch.float16
base_model.model.model.layers.22.self_attn.k_proj.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.22.self_attn.v_proj.base_layer.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.22.self_attn.v_proj.lora_A.default.weight torch.Size([8,4096]) torch.float16
base_model.model.model.layers.22.self_attn.v_proj.lora_B.default.weight torch.Size([4096,8]) torch.float16
base_model.model.model.layers.22.self_attn.o_proj.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.22.mlp.gate_proj.weight torch.Size([11008,4096]) torch.float16
base_model.model.model.layers.22.mlp.up_proj.weight torch.Size([11008,4096]) torch.float16
base_model.model.model.layers.22.mlp.down_proj.weight torch.Size([4096,11008]) torch.float16
base_model.model.model.layers.22.input_layernorm.weight torch.Size([4096]) torch.float16
base_model.model.model.layers.22.post_attention_layernorm.weight torch.Size([4096]) torch.float16
base_model.model.model.layers.23.self_attn.q_proj.base_layer.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.23.self_attn.q_proj.lora_A.default.weight torch.Size([8,4096]) torch.float16
base_model.model.model.layers.23.self_attn.q_proj.lora_B.default.weight torch.Size([4096,8]) torch.float16
base_model.model.model.layers.23.self_attn.k_proj.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.23.self_attn.v_proj.base_layer.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.23.self_attn.v_proj.lora_A.default.weight torch.Size([8,4096]) torch.float16
base_model.model.model.layers.23.self_attn.v_proj.lora_B.default.weight torch.Size([4096,8]) torch.float16
base_model.model.model.layers.23.self_attn.o_proj.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.23.mlp.gate_proj.weight torch.Size([11008,4096]) torch.float16
base_model.model.model.layers.23.mlp.up_proj.weight torch.Size([11008,4096]) torch.float16
base_model.model.model.layers.23.mlp.down_proj.weight torch.Size([4096,11008]) torch.float16
base_model.model.model.layers.23.input_layernorm.weight torch.Size([4096]) torch.float16
base_model.model.model.layers.23.post_attention_layernorm.weight torch.Size([4096]) torch.float16
base_model.model.model.layers.24.self_attn.q_proj.base_layer.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.24.self_attn.q_proj.lora_A.default.weight torch.Size([8,4096]) torch.float16
base_model.model.model.layers.24.self_attn.q_proj.lora_B.default.weight torch.Size([4096,8]) torch.float16
base_model.model.model.layers.24.self_attn.k_proj.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.24.self_attn.v_proj.base_layer.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.24.self_attn.v_proj.lora_A.default.weight torch.Size([8,4096]) torch.float16
base_model.model.model.layers.24.self_attn.v_proj.lora_B.default.weight torch.Size([4096,8]) torch.float16
base_model.model.model.layers.24.self_attn.o_proj.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.24.mlp.gate_proj.weight torch.Size([11008,4096]) torch.float16
base_model.model.model.layers.24.mlp.up_proj.weight torch.Size([11008,4096]) torch.float16
base_model.model.model.layers.24.mlp.down_proj.weight torch.Size([4096,11008]) torch.float16
base_model.model.model.layers.24.input_layernorm.weight torch.Size([4096]) torch.float16
base_model.model.model.layers.24.post_attention_layernorm.weight torch.Size([4096]) torch.float16
base_model.model.model.layers.25.self_attn.q_proj.base_layer.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.25.self_attn.q_proj.lora_A.default.weight torch.Size([8,4096]) torch.float16
base_model.model.model.layers.25.self_attn.q_proj.lora_B.default.weight torch.Size([4096,8]) torch.float16
base_model.model.model.layers.25.self_attn.k_proj.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.25.self_attn.v_proj.base_layer.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.25.self_attn.v_proj.lora_A.default.weight torch.Size([8,4096]) torch.float16
base_model.model.model.layers.25.self_attn.v_proj.lora_B.default.weight torch.Size([4096,8]) torch.float16
base_model.model.model.layers.25.self_attn.o_proj.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.25.mlp.gate_proj.weight torch.Size([11008,4096]) torch.float16
base_model.model.model.layers.25.mlp.up_proj.weight torch.Size([11008,4096]) torch.float16
base_model.model.model.layers.25.mlp.down_proj.weight torch.Size([4096,11008]) torch.float16
base_model.model.model.layers.25.input_layernorm.weight torch.Size([4096]) torch.float16
base_model.model.model.layers.25.post_attention_layernorm.weight torch.Size([4096]) torch.float16
base_model.model.model.layers.26.self_attn.q_proj.base_layer.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.26.self_attn.q_proj.lora_A.default.weight torch.Size([8,4096]) torch.float16
base_model.model.model.layers.26.self_attn.q_proj.lora_B.default.weight torch.Size([4096,8]) torch.float16
base_model.model.model.layers.26.self_attn.k_proj.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.26.self_attn.v_proj.base_layer.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.26.self_attn.v_proj.lora_A.default.weight torch.Size([8,4096]) torch.float16
base_model.model.model.layers.26.self_attn.v_proj.lora_B.default.weight torch.Size([4096,8]) torch.float16
base_model.model.model.layers.26.self_attn.o_proj.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.26.mlp.gate_proj.weight torch.Size([11008,4096]) torch.float16
base_model.model.model.layers.26.mlp.up_proj.weight torch.Size([11008,4096]) torch.float16
base_model.model.model.layers.26.mlp.down_proj.weight torch.Size([4096,11008]) torch.float16
base_model.model.model.layers.26.input_layernorm.weight torch.Size([4096]) torch.float16
base_model.model.model.layers.26.post_attention_layernorm.weight torch.Size([4096]) torch.float16
base_model.model.model.layers.27.self_attn.q_proj.base_layer.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.27.self_attn.q_proj.lora_A.default.weight torch.Size([8,4096]) torch.float16
base_model.model.model.layers.27.self_attn.q_proj.lora_B.default.weight torch.Size([4096,8]) torch.float16
base_model.model.model.layers.27.self_attn.k_proj.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.27.self_attn.v_proj.base_layer.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.27.self_attn.v_proj.lora_A.default.weight torch.Size([8,4096]) torch.float16
base_model.model.model.layers.27.self_attn.v_proj.lora_B.default.weight torch.Size([4096,8]) torch.float16
base_model.model.model.layers.27.self_attn.o_proj.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.27.mlp.gate_proj.weight torch.Size([11008,4096]) torch.float16
base_model.model.model.layers.27.mlp.up_proj.weight torch.Size([11008,4096]) torch.float16
base_model.model.model.layers.27.mlp.down_proj.weight torch.Size([4096,11008]) torch.float16
base_model.model.model.layers.27.input_layernorm.weight torch.Size([4096]) torch.float16
base_model.model.model.layers.27.post_attention_layernorm.weight torch.Size([4096]) torch.float16
base_model.model.model.layers.28.self_attn.q_proj.base_layer.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.28.self_attn.q_proj.lora_A.default.weight torch.Size([8,4096]) torch.float16
base_model.model.model.layers.28.self_attn.q_proj.lora_B.default.weight torch.Size([4096,8]) torch.float16
base_model.model.model.layers.28.self_attn.k_proj.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.28.self_attn.v_proj.base_layer.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.28.self_attn.v_proj.lora_A.default.weight torch.Size([8,4096]) torch.float16
base_model.model.model.layers.28.self_attn.v_proj.lora_B.default.weight torch.Size([4096,8]) torch.float16
base_model.model.model.layers.28.self_attn.o_proj.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.28.mlp.gate_proj.weight torch.Size([11008,4096]) torch.float16
base_model.model.model.layers.28.mlp.up_proj.weight torch.Size([11008,4096]) torch.float16
base_model.model.model.layers.28.mlp.down_proj.weight torch.Size([4096,11008]) torch.float16
base_model.model.model.layers.28.input_layernorm.weight torch.Size([4096]) torch.float16
base_model.model.model.layers.28.post_attention_layernorm.weight torch.Size([4096]) torch.float16
base_model.model.model.layers.29.self_attn.q_proj.base_layer.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.29.self_attn.q_proj.lora_A.default.weight torch.Size([8,4096]) torch.float16
base_model.model.model.layers.29.self_attn.q_proj.lora_B.default.weight torch.Size([4096,8]) torch.float16
base_model.model.model.layers.29.self_attn.k_proj.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.29.self_attn.v_proj.base_layer.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.29.self_attn.v_proj.lora_A.default.weight torch.Size([8,4096]) torch.float16
base_model.model.model.layers.29.self_attn.v_proj.lora_B.default.weight torch.Size([4096,8]) torch.float16
base_model.model.model.layers.29.self_attn.o_proj.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.29.mlp.gate_proj.weight torch.Size([11008,4096]) torch.float16
base_model.model.model.layers.29.mlp.up_proj.weight torch.Size([11008,4096]) torch.float16
base_model.model.model.layers.29.mlp.down_proj.weight torch.Size([4096,11008]) torch.float16
base_model.model.model.layers.29.input_layernorm.weight torch.Size([4096]) torch.float16
base_model.model.model.layers.29.post_attention_layernorm.weight torch.Size([4096]) torch.float16
base_model.model.model.layers.30.self_attn.q_proj.base_layer.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.30.self_attn.q_proj.lora_A.default.weight torch.Size([8,4096]) torch.float16
base_model.model.model.layers.30.self_attn.q_proj.lora_B.default.weight torch.Size([4096,8]) torch.float16
base_model.model.model.layers.30.self_attn.k_proj.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.30.self_attn.v_proj.base_layer.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.30.self_attn.v_proj.lora_A.default.weight torch.Size([8,4096]) torch.float16
base_model.model.model.layers.30.self_attn.v_proj.lora_B.default.weight torch.Size([4096,8]) torch.float16
base_model.model.model.layers.30.self_attn.o_proj.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.30.mlp.gate_proj.weight torch.Size([11008,4096]) torch.float16
base_model.model.model.layers.30.mlp.up_proj.weight torch.Size([11008,4096]) torch.float16
base_model.model.model.layers.30.mlp.down_proj.weight torch.Size([4096,11008]) torch.float16
base_model.model.model.layers.30.input_layernorm.weight torch.Size([4096]) torch.float16
base_model.model.model.layers.30.post_attention_layernorm.weight torch.Size([4096]) torch.float16
base_model.model.model.layers.31.self_attn.q_proj.base_layer.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.31.self_attn.q_proj.lora_A.default.weight torch.Size([8,4096]) torch.float16
base_model.model.model.layers.31.self_attn.q_proj.lora_B.default.weight torch.Size([4096,8]) torch.float16
base_model.model.model.layers.31.self_attn.k_proj.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.31.self_attn.v_proj.base_layer.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.31.self_attn.v_proj.lora_A.default.weight torch.Size([8,4096]) torch.float16
base_model.model.model.layers.31.self_attn.v_proj.lora_B.default.weight torch.Size([4096,8]) torch.float16
base_model.model.model.layers.31.self_attn.o_proj.weight torch.Size([4096,4096]) torch.float16
base_model.model.model.layers.31.mlp.gate_proj.weight torch.Size([11008,4096]) torch.float16
base_model.model.model.layers.31.mlp.up_proj.weight torch.Size([11008,4096]) torch.float16
base_model.model.model.layers.31.mlp.down_proj.weight torch.Size([4096,11008]) torch.float16
base_model.model.model.layers.31.input_layernorm.weight torch.Size([4096]) torch.float16
base_model.model.model.layers.31.post_attention_layernorm.weight torch.Size([4096]) torch.float16
base_model.model.model.norm.weight torch.Size([4096]) torch.float16
base_model.model.lm_head.weight torch.Size([32000,4096]) torch.float16

步骤5 配置训练参数

在这一步,我们定义训练参数,这些参数包括输出目录、学习率、权重衰减、梯度累积步数、训练周期数等。这些参数将被用来配置训练过程。(设置adam_epsilon=1e-4避免精度溢出)

##   adam_epsilon=1e-4
args = TrainingArguments(
    output_dir="/root/autodl-tmp/llama2output",# 指定模型训练结果的输出目录
    per_device_train_batch_size=2,# 设置每个设备(如GPU)在训练过程中的批次大小为2,越大需要资源也越多
    gradient_accumulation_steps=8,# 指定梯度累积步数为8,即将多个批次的梯度累加后再进行一次参数更新
    logging_steps=10,# 每10个步骤记录一次日志信息
    num_train_epochs=1,# 指定训练的总轮数为1
    adam_epsilon=1e-4#避免精度溢出)

步骤6 创建训练器

最后,我们创建一个训练器实例,它封装了训练循环。训练器将负责运行训练过程,并根据我们之前定义的参数进行优化。

trainer = Trainer(
    model=model,
    args=args,
    train_dataset=tokenized_ds,
    data_collator=DataCollatorForSeq2Seq(tokenizer=tokenizer, padding=True),)

步骤7 模型训练

通过调用训练器的

train()

方法,我们启动模型的训练过程。这将根据之前定义的参数执行模型的训练。

trainer.train()

输出:
在这里插入图片描述

步骤8 模型推理

训练完成后,我们可以使用训练好的模型进行推理。

from transformers import pipeline

pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)

ipt ="Human: {}\n{}".format("如何写简历?","").strip()+"\n\nAssistant: "print(pipe(ipt, max_length=256, do_sample=True,))

输出:

[{'generated_text':'Human: 如何写简历?\n\nAssistant:  写简历的方法主要有两个步骤:\n\n1. 首先,您需要确定您想要投递的职位和企业。根据您的职业目标和职位要求,准备您想要展示的职业经历和技能。\n\n2. 然后,根据您的职业目标和职位要求,您需要撰写简历的内容。您的简历应该包含您的个人信息、职业经历、技能和职能、成就和荣誉、职业目标和职业信念。您的简历应该简明'}]

五、Llama2 调试过程问题整理

1、MAX_LENGTH设置:

对数据集预处理时,为了批处理,我们会设置一个MAX_LENGTH; llama对中文支持不是很好,一个中文会用4个token表示,所以MAX_LENGTH要条长一点,原来256现在改为400,否则会缺很多数据

2、对齐设置

对齐设置:tokenizer.padding_side = “right”
需要调整模型向右补齐(默认向左补齐),否则会导致训练时,无法收敛;

3、设置pad_token_id

设置pad_token_id为eos_token_id(即Llama批处理时,根据MAX_LENGTH对齐不足时,补充结束符进行对齐)
tokenizer.pad_token_id = 2 #2代表结束符的token,可以查看tokenizer(tokenizer.eos_token),不设置也会导致无法收敛

4、结束符设置

分词器处理时,不添加结束符;因为这里会添加不成功,可以对比查看tokenizer(tokenizer.eos_token) 和 tokenizer(“abc” + tokenizer.eos_token) 会发现没有添加成功,因此就需要手工添加结束符;手动对input_id,attention_mask、labels 设置结束符 tokenizer.eos_token_id (代表);
不处理会导致回答问题时,无法识别停止符,一直不会结束
修改前

defprocess_func(example):
    MAX_LENGTH =256
    input_ids, attention_mask, labels =[],[],[]
    instruction = tokenizer("\n".join(["Human: "+ example["instruction"], example["input"]]).strip()+"\n\nAssistant: ")
    response = tokenizer(example["output"]+ tokenizer.eos_token)
    input_ids = instruction["input_ids"]+ response["input_ids"]
    attention_mask = instruction["attention_mask"]+ response["attention_mask"]
    labels =[-100]*len(instruction["input_ids"])+ response["input_ids"]iflen(input_ids)> MAX_LENGTH:
        input_ids = input_ids[:MAX_LENGTH]
        attention_mask = attention_mask[:MAX_LENGTH]
        labels = labels[:MAX_LENGTH]return{"input_ids": input_ids,"attention_mask": attention_mask,"labels": labels
    }

修改后

defprocess_func(example):
    MAX_LENGTH =400
    input_ids, attention_mask, labels =[],[],[]
    instruction = tokenizer("\n".join(["Human: "+ example["instruction"], example["input"]]).strip()+"\n\nAssistant: ", add_special_tokens=False)
    response = tokenizer(example["output"], add_special_tokens=False)
    input_ids = instruction["input_ids"]+ response["input_ids"]+[tokenizer.eos_token_id]
    attention_mask = instruction["attention_mask"]+ response["attention_mask"]+[1]
    labels =[-100]*len(instruction["input_ids"])+ response["input_ids"]+[tokenizer.eos_token_id]iflen(input_ids)> MAX_LENGTH:
        input_ids = input_ids[:MAX_LENGTH]
        attention_mask = attention_mask[:MAX_LENGTH]
        labels = labels[:MAX_LENGTH]return{"input_ids": input_ids,"attention_mask": attention_mask,"labels": labels
    }

5、设置 adam_epsilon

训练参数设置时,设置 adam_epsilon=1e-4 (默认全精度不需要设置,它的值为1e-8;采用半精度时,如果不设置,会出现精度溢出,导致adam_epsilon被四舍五入成0);如果不设置,会导致训练时无法正常收敛

#默认全精度#import torch#torch.tensor(1e-8)#输出:tensor(1.0000e-08)#使用半精度后:torch.tensor(1e-8).half()#输出:tensor(0., dtype=torch.float16) #此时会被四舍五入成0
args = TrainingArguments(
    output_dir="/root/autodl-tmp/llama2output",
    per_device_train_batch_size=2,
    gradient_accumulation_steps=8,
    logging_steps=10,
    num_train_epochs=1,
    adam_epsilon=1e-4)

总结

本文详细阐述了如何通过LoRA技术微调Llama2大型预训练语言模型,使其更好地适应特定的自然语言处理任务。我们首先介绍了Llama2模型及其在AI领域的重要性,然后讨论了微调前的准备工作,如数据收集和模型选择。接着,我们逐步解释了微调的实战步骤,包括数据处理、模型创建、参数配置、训练以及推理。

在调试过程中,我们强调了针对中文数据处理的MAX_LENGTH设置、对齐方式、结束符设置和训练参数优化等关键问题。这些调整确保了模型的有效收敛和性能提升。

展望未来,随着Llama模型和LoRA技术的不断进步,我们可以期待更多高效、灵活的微调方法出现,特别是对非英语语言的优化将是研究的重点,以支持全球化的NLP应用发展。本文提供的指导和最佳实践,将助力读者为特定应用场景定制高性能的NLP模型,推动学术研究和工业应用的进步。

在这里插入图片描述

🎯🔖更多专栏系列文章:AIGC-AI大模型探索之路

如果文章内容对您有所触动,别忘了点赞、⭐关注,收藏!加入我,让我们携手同行AI的探索之旅,一起开启智能时代的大门!


本文转载自: https://blog.csdn.net/xiaobing259/article/details/138763708
版权归原作者 寻道AI小兵 所有, 如有侵权,请联系我们删除。

“AI大模型探索之路-训练篇21:Llama2微调实战-LoRA技术微调步骤详解”的评论:

还没有评论