0


李宏毅_机器学习_作业4(详解)_HW4 Classify the speakers

本次作业需要学习完transformer后完成!

目录标题

Task

做语者辨识任务,一共有600个语者,给了每一个语者的语音feature进行训练,然后通过test_feature进行语者辨识。(本质上还是分类任务Classification)
Simple(0.60824):run sample code and know how to use transformer
Medium(0.70375):know how to adjust parameters of transformer
Strong(0.77750):construct conformer
Boss(0.86500):implement self-attention pooling and additive margin softmax

使用kaggle训练作业模型

助教样例code解读

数据集分析

  1. mapping.json文件在这里插入图片描述 将speakers的id映射到编号0~599,因为一共有600个不同的speaker需要对语音进行分类
  2. metadata.json文件在这里插入图片描述 存放的是training data,本次实验没有专门设置validation data,需要从training data中划分validation data n_mels:在对语音数据进行处理时,从每一个时间维度上选取n_mels个维度来表示这个feature speakers:以key-value形式存放speakers的id和所有feature(每个speaker都有多个feature) feature_path:这个feature的文件名 mel_len:每一个feature的长度(每一个可能都不一样,后期需要处理)
  3. testdata.json文件在这里插入图片描述 与metadata形式类似,需要我们进行语者辨识。utterance:话语; 言论

Dataset

本次实验的数据来源于 Voxceleb2语音数据集,是真实世界中语者的语音,作业中选取了600个语者,和他们的语音进行训练

import os
import json
import torch
import random
from pathlib import Path
from torch.utils.data import Dataset
from torch.nn.utils.rnn import pad_sequence
 
 
classmyDataset(Dataset):def__init__(self, data_dir, segment_len=128):
        self.data_dir = data_dir
        self.segment_len = segment_len
    
        # Load the mapping from speaker neme to their corresponding id. 
        mapping_path = Path(data_dir)/"mapping.json"#mapping_path: Dataset\mapping.json
        mapping = json.load(mapping_path.open())#mapping: {'speaker2id': {'id00464': 0, 'id00559': 1,
        self.speaker2id = mapping["speaker2id"]#self.speaker2id: {'id00464': 0, 'id00559': 1, 'id00578': 2, 'id00905': 3,...# Load metadata of training data.
        metadata_path = Path(data_dir)/"metadata.json"        
        metadata = json.load(open(metadata_path))["speakers"]#metadata中存放的key是speaker_id,value是每个speaker的feature和对应长度# Get the total number of speaker.
        self.speaker_num =len(metadata.keys())
        self.data =[]for speaker in metadata.keys():#遍历每一个spearker_idfor utterances in metadata[speaker]:#通过speaker_id取出speaker的所有feature和len"""
                utterances格式:
                {'feature_path': 'uttr-18e375195dc146fd8d14b8a322c29b90.pt', 'mel_len': 435}
               {'feature_path': 'uttr-da9917d5853049178487c065c9e8b718.pt', 'mel_len': 490}...
       """
                self.data.append([utterances["feature_path"], self.speaker2id[speaker]])#self.data:[['uttr-18e375195dc146fd8d14b8a322c29b90.pt', 436], #           ['uttr-da9917d5853049178487c065c9e8b718.pt', 436],...#一共600个speaker,436表示第436个speakerdef__len__(self):returnlen(self.data)def__getitem__(self, index):
        feat_path, speaker = self.data[index]#feature和speaker编号[0,599]# Load preprocessed mel-spectrogram.
        mel = torch.load(os.path.join(self.data_dir, feat_path))#加载feature#mel.size():torch.Size([490, 40])# Segmemt mel-spectrogram into "segment_len" frames.iflen(mel)> self.segment_len:#将feature切片成固定长度# Randomly get the starting point of the segment.
            start = random.randint(0,len(mel)- self.segment_len)#随机选取切片起始点# Get a segment with "segment_len" frames.
            mel = torch.FloatTensor(mel[start:start+self.segment_len])#截取长度为segment_len的片段 mel.size():torch.Size([128, 40])else:
            mel = torch.FloatTensor(mel)#为什么小于segment_len不填充?  填充在dataloader中完成# Turn the speaker id into long for computing loss later.
        speaker = torch.FloatTensor([speaker]).long()#将speaker的编号转为long类型return mel, speaker
 
    defget_speaker_number(self):return self.speaker_num  #600

Dataloader

主要任务:1.划分验证集 2.将长度小于segment_len的mel进行padding 3.生成dataloader

import torch
from torch.utils.data import DataLoader, random_split
from torch.nn.utils.rnn import pad_sequence

defcollate_batch(batch):#用于整理数据的函数,参数为dataloader中的一个batch# Process features within a batch."""Collate a batch of data."""
    mel, speaker =zip(*batch)#zip拆包,将一个batch中的mel和speaker分开,各自单独形成一个数组# Because we train the model batch by batch, we need to pad the features in the same batch to make their lengths the same.#mel中元素长度不相同时,将所有的mel元素填充到最长的元素的长度,填充的值由padding_value决定
    mel = pad_sequence(mel, batch_first=True, padding_value=-20)# pad log 10^(-20) which is very small value.# mel: (batch size, length, 40)return mel, torch.FloatTensor(speaker).long()defget_dataloader(data_dir, batch_size, n_workers):"""Generate dataloader"""
    dataset = myDataset(data_dir)
    speaker_num = dataset.get_speaker_number()# Split dataset into training dataset and validation dataset
    trainlen =int(0.9*len(dataset))
    lengths =[trainlen,len(dataset)- trainlen] 
    trainset, validset = random_split(dataset, lengths)#无覆盖的随机划分训练集和验证集

    train_loader = DataLoader(
        trainset,
        batch_size=batch_size,
        shuffle=True,
        drop_last=True,
        num_workers=n_workers,
        pin_memory=True,
        collate_fn=collate_batch,)
    valid_loader = DataLoader(
        validset,
        batch_size=batch_size,
        num_workers=n_workers,
        drop_last=True,
        pin_memory=True,
        collate_fn=collate_batch,)return train_loader, valid_loader, speaker_num

Model

最关键部分,transformer运用
transformer基础架构来自于论文: Attention Is All You Need
论文解读: 李沐大神的论文带读,用了都说好

这里是分类任务,仅需要使用Encoder部分
pytorch官方文档: torch.nn.TransformerEncoderLayer

import torch
import torch.nn as nn
import torch.nn.functional as F

classClassifier(nn.Module):def__init__(self, d_model=80, n_spks=600, dropout=0.1):super().__init__()# Project the dimension of features from that of input into d_model.
        self.prenet = nn.Linear(40, d_model)# TODO:#   Change Transformer to Conformer.#   https://arxiv.org/abs/2005.08100#对于文本分类等下游任务,只需要用到Encoder部分即可#nhead:multi_head_attention中head个数#d_model:输入的feature的个数#dim_feedforward:feedforward network的维度#dropout默认0.1
        self.encoder_layer = nn.TransformerEncoderLayer(
            d_model=d_model, dim_feedforward=256, nhead=2)# self.encoder = nn.TransformerEncoder(self.encoder_layer, num_layers=2)# Project the the dimension of features from d_model into speaker nums.
        self.pred_layer = nn.Sequential(
            nn.Linear(d_model, d_model),
            nn.ReLU(),
            nn.Linear(d_model, n_spks),)defforward(self, mels):"""
        args:
            mels: (batch size, length, 40)
        return:
            out: (batch size, n_spks)
        """# out: (batch size, length, d_model)   length=segment_len
        out = self.prenet(mels)# out: (length, batch size, d_model)
        out = out.permute(1,0,2)#交换dim=0和dim=1# The encoder layer expect features in the shape of (length, batch size, d_model).
        out = self.encoder_layer(out)# out: (batch size, length, d_model)
        out = out.transpose(0,1)#转置dim=0和dim=1# mean pooling
        stats = out.mean(dim=1)#可以理解为求平均并去除维度1  stats.size():(batch_size,d_model)# out: (batch, n_spks)
        out = self.pred_layer(stats)return out

Learning rate schedule

当batch设置的比较大的时候通常需要比较大的学习率(通常batch_size和学习率成正比),但在刚开始训练时,参数是随机初始化的,梯度也比较大,这时学习率也比较大,会使得训练不稳定。
warm up 方法就是在最初几轮迭代采用比较小的学习率,等梯度下降到一定程度再恢复初始学习率
------《神经网络与深度学习》

import math

import torch
from torch.optim import Optimizer
from torch.optim.lr_scheduler import LambdaLR

defget_cosine_schedule_with_warmup(
    optimizer: Optimizer,
    num_warmup_steps:int,
    num_training_steps:int,
    num_cycles:float=0.5,
    last_epoch:int=-1,):"""
    Create a schedule with a learning rate that decreases following the values of the cosine function between the
    initial lr set in the optimizer to 0, after a warmup period during which it increases linearly between 0 and the
    initial lr set in the optimizer.

    Args:
        optimizer (:class:`~torch.optim.Optimizer`):
        The optimizer for which to schedule the learning rate.
        num_warmup_steps (:obj:`int`):
        The number of steps for the warmup phase.
        num_training_steps (:obj:`int`):
        The total number of training steps.
        num_cycles (:obj:`float`, `optional`, defaults to 0.5):
        The number of waves in the cosine schedule (the defaults is to just decrease from the max value to 0
        following a half-cosine).
        last_epoch (:obj:`int`, `optional`, defaults to -1):
        The index of the last epoch when resuming training.

    Return:
        :obj:`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
    """deflr_lambda(current_step):# Warmupif current_step < num_warmup_steps:returnfloat(current_step)/float(max(1, num_warmup_steps))# decadence
        progress =float(current_step - num_warmup_steps)/float(max(1, num_training_steps - num_warmup_steps))returnmax(0.0,0.5*(1.0+ math.cos(math.pi *float(num_cycles)*2.0* progress)))return LambdaLR(optimizer, lr_lambda, last_epoch)

Model Function

调用自定义model的forward部分,每遍历一个batch都要调用一次model_fn

import torch

defmodel_fn(batch, model, criterion, device):"""Forward a batch through the model."""

    mels, labels = batch
  
    #print("model_fn_mels.size():",mels.size())  # out:torch.Size([16, 128, 40]) [batch_size,segment_len,40]
    mels = mels.to(device)
    labels = labels.to(device)

    outs = model(mels)

    loss = criterion(outs, labels)# Get the speaker id with highest probability.
    preds = outs.argmax(1)# Compute accuracy.
    accuracy = torch.mean((preds == labels).float())return loss, accuracy

Validate

计算验证集上的准确率

from tqdm import tqdm
import torch

defvalid(dataloader, model, criterion, device):"""Validate on validation set."""

    model.eval()
    running_loss =0.0
    running_accuracy =0.0#验证集5667个
    pbar = tqdm(total=len(dataloader.dataset), ncols=0, desc="Valid", unit=" uttr")for i, batch inenumerate(dataloader):with torch.no_grad():
            loss, accuracy = model_fn(batch, model, criterion, device)
            running_loss += loss.item()
            running_accuracy += accuracy.item()

        pbar.update(dataloader.batch_size)
        pbar.set_postfix(
            loss=f"{running_loss /(i+1):.2f}",
            accuracy=f"{running_accuracy /(i+1):.2f}",)

    pbar.close()
    model.train()return running_accuracy /len(dataloader)

Main function

开始跑模型,这里与之前的作业有不同的地方。前几个作业是跑完一个epoch也就是完整训练集,再开始跑验证集。这里是跑valid_steps个batch,跑一遍验证集。

from tqdm import tqdm

import torch
import torch.nn as nn
from torch.optim import AdamW
from torch.utils.data import DataLoader, random_split

defparse_args():"""arguments"""
    config ={"data_dir":"./Dataset","save_path":"model.ckpt","batch_size":16,"n_workers":0,"valid_steps":2000,"warmup_steps":1000,"save_steps":10000,"total_steps":70000,}return config

defmain(
    data_dir,
    save_path,
    batch_size,
    n_workers,
    valid_steps,
    warmup_steps,
    total_steps,
    save_steps,):"""Main function."""
    device = torch.device("cuda"if torch.cuda.is_available()else"cpu")print(f"[Info]: Use {device} now!")

    train_loader, valid_loader, speaker_num = get_dataloader(data_dir, batch_size, n_workers)
    train_iterator =iter(train_loader)#iter()生成迭代器,以batch为单位#print("train_iterator:",train_iterator) #<torch.utils.data.dataloader._SingleProcessDataLoaderIter object at 0x000001FD07C558D0>print(f"[Info]: Finish loading data!",flush =True)

    model = Classifier(n_spks=speaker_num).to(device)
    criterion = nn.CrossEntropyLoss()
    optimizer = AdamW(model.parameters(), lr=1e-3)
    scheduler = get_cosine_schedule_with_warmup(optimizer, warmup_steps, total_steps)#上面定义的warm up函数print(f"[Info]: Finish creating model!",flush =True)

    best_accuracy =-1.0
    best_state_dict =None

    pbar = tqdm(total=valid_steps, ncols=0, desc="Train", unit=" step")#train valid_steps个batch再跑验证集for step inrange(total_steps):#一共运行total_Steps轮,这里没有epoch的概念# Get datatry:
            batch =next(train_iterator)#next()返回迭代器的下一个项目,即下一个batch#print("batch[0].size():",batch[0].size())    #out:torch.Size([16, 128, 40]) [batch_size,segment_len,40]       except StopIteration:# 不指定 default 且迭代器元素耗尽, 将引发 StopIteration 异常
            train_iterator =iter(train_loader)
            batch =next(train_iterator)

        loss, accuracy = model_fn(batch, model, criterion, device)#计算当前batch的loss和acc#print("loss:",loss) #tensor(6.3915, device='cuda:0', grad_fn=<NllLossBackward0>)            
        batch_loss = loss.item()# loss是张量,item()可以取出张量中的值#print("batch_loss:",batch_loss) #batch_loss: 6.391468048095703
        batch_accuracy = accuracy.item()# Updata model 反向传播更新参数,每跑一个batch都会更新
        loss.backward()
        optimizer.step()
        scheduler.step()
        optimizer.zero_grad()# Log
        pbar.update()#打印当前loss和acc
        pbar.set_postfix(
            loss=f"{batch_loss:.2f}",
            accuracy=f"{batch_accuracy:.2f}",
            step=step +1,)# Do validationif(step +1)% valid_steps ==0:#经过valid_steps开始跑验证集
            pbar.close()

            valid_accuracy = valid(valid_loader, model, criterion, device)#计算valid_acc# keep the best modelif valid_accuracy > best_accuracy:
                best_accuracy = valid_accuracy
                best_state_dict = model.state_dict()#保存模型参数

            pbar = tqdm(total=valid_steps, ncols=0, desc="Train", unit=" step")# Save the best model so far.if(step +1)% save_steps ==0and best_state_dict isnotNone:#每save_steps轮会保存一次当前最好模型
            torch.save(best_state_dict, save_path)
            pbar.write(f"Step {step +1}, best model saved. (accuracy={best_accuracy:.4f})")

    pbar.close()if __name__ =="__main__":
    main(**parse_args())

在这里插入图片描述

Inference

inference:推理,就是跑testing data
类比training即可

Main function of inference

类似Main function

样例code得分

在这里插入图片描述

Medium

调整参数过medium
d_model=160
n_head=8
num_layers=2
linear layer:1层
total_steps=100000
在这里插入图片描述

在这里插入图片描述这一轮train上准确率100%,只虽然只进行了13步,但从loss上可以看出是有过拟合的

Strong

Transformer->Conformer

先上结果,未过strong
在这里插入图片描述在这里插入图片描述
严重过拟合,在训练集和验证集上均有过拟合现象,验证集上的准确率远高于测试集上结果

论文地址: Conformer
conformer的思路很简单,就是将Transformer和CNN进行结合。原因:
1.Transformer中由于attention机制,拥有很好的全局性。
2.CNN拥有较好的局部性,可以对细粒度的信息进行提取。
两者结合在语音上有较好的效果。论文中阐述了具体的model架构。

  1. 首先 pip conformer包
!pip install conformer 
  1. 导入conformer包
from conformer import ConformerBlock
  1. 修改module
import torch
import torch.nn as nn
import torch.nn.functional as F

classClassifier(nn.Module):def__init__(self, d_model=512, n_spks=600, dropout=0.1):super().__init__()# Project the dimension of features from that of input into d_model.
        self.prenet = nn.Linear(40, d_model)# TODO:#   Change Transformer to Conformer.#   https://arxiv.org/abs/2005.08100#对于文本分类等下游任务,只需要用到Encoder部分即可#nhead:multi_head_attention中head个数#d_model:输入的feature的个数#dim_feedforward:feedforward network的维度#dropout默认0.1#self.encoder_layer = nn.TransformerEncoderLayer(#d_model=d_model, dim_feedforward=256, nhead=8#)#self.encoder = nn.TransformerEncoder(self.encoder_layer, num_layers=2)
        self.conformer_block=ConformerBlock(
        dim=d_model,
        dim_head=64,
        heads=8,
        ff_mult=4,
        conv_expansion_factor=2,
        conv_kernel_size=31,
        attn_dropout=dropout,
        ff_dropout=dropout,
        conv_dropout=dropout
        )# Project the the dimension of features from d_model into speaker nums.
        self.pred_layer = nn.Sequential(#nn.Linear(d_model, d_model),#nn.ReLU(),
            nn.Linear(d_model, n_spks),)defforward(self, mels):"""
        args:
            mels: (batch size, length, 40)
        return:
            out: (batch size, n_spks)
        """# out: (batch size, length, d_model)   length=segment_len
        out = self.prenet(mels)# out: (length, batch size, d_model)
        out = out.permute(1,0,2)#交换dim=0和dim=1# The encoder layer expect features in the shape of (length, batch size, d_model).
        out = self.conformer_block(out)# out: (batch size, length, d_model)
        out = out.transpose(0,1)#转置dim=0和dim=1# mean pooling
        stats = out.mean(dim=1)#可以理解为求平均并去除维度1  stats.size():(batch_size,d_model)# out: (batch, n_spks)
        out = self.pred_layer(stats)return out

Self-attention pooling

self attention pooling论文
主要看论文中的self-attention pooling架构,和mean pooling相比之下,self-attention pooling是通过可学习参数来进行pooling,相比mean pooling可以提取到一些信息。
参考大佬视频讲解
代码:

#self attention pooling类实现import torch.nn.functional as F
import torch.nn as nn
classSelf_Attentive_Pooling(nn.Module):def__init__(self,dim):super(Self_Attentive_Pooling,self).__init__()
       self.sap_linear=nn.Linear(dim,dim)
       self.attention=nn.Parameter(torch.FloatTensor(dim,1))defforward(self,x):
       x=x.permute(0,2,1)
       h=torch.tanh(self.sap_linear(x))
       w=torch.matmul(h,self.attention).squeeze(dim=2)
       w=F.softmax(w,dim=1).view(x.size(0),x.size(1),1)
       x=torch.sum(x*w,dim=1)return x

修改model:

import torch
import torch.nn as nn
import torch.nn.functional as F

classClassifier(nn.Module):def__init__(self, d_model=512, n_spks=600, dropout=0.1):super().__init__()# Project the dimension of features from that of input into d_model.
       self.prenet = nn.Linear(40, d_model)# TODO:#   Change Transformer to Conformer.#   https://arxiv.org/abs/2005.08100#对于文本分类等下游任务,只需要用到Encoder部分即可#nhead:multi_head_attention中head个数#d_model:输入的feature的个数#dim_feedforward:feedforward network的维度#dropout默认0.1#self.encoder_layer = nn.TransformerEncoderLayer(#d_model=d_model, dim_feedforward=256, nhead=8#)#self.encoder = nn.TransformerEncoder(self.encoder_layer, num_layers=2)
       self.conformer_block=ConformerBlock(
       dim=d_model,
       dim_head=64,
       heads=8,
       ff_mult=4,
       conv_expansion_factor=2,
       conv_kernel_size=31,
       attn_dropout=dropout,
       ff_dropout=dropout,
       conv_dropout=dropout
       )# Project the the dimension of features from d_model into speaker nums.
       self.pooling=Self_Attentive_Pooling(d_model)
       self.pred_layer = nn.Sequential(#nn.Linear(d_model, d_model),#nn.ReLU(),
           nn.Linear(d_model, n_spks),)defforward(self, mels):"""
       args:
           mels: (batch size, length, 40)
       return:
           out: (batch size, n_spks)
       """# out: (batch size, length, d_model)   length=segment_len
       out = self.prenet(mels)# out: (length, batch size, d_model)
       out = out.permute(1,0,2)#交换dim=0和dim=1# The encoder layer expect features in the shape of (length, batch size, d_model).
       out = self.conformer_block(out)# out: (batch size, length, d_model)#out = out.transpose(0, 1)  #转置dim=0和dim=1# mean pooling#stats = out.mean(dim=1) #可以理解为求平均并去除维度1  stats.size():(batch_size,d_model)
       
       out=out.permute(1,2,0)
       stats=self.pooling(out)# out: (batch, n_spks)
       out = self.pred_layer(stats)return out

total_steps=70000
在这里插入图片描述
total_steps=100000
在这里插入图片描述


本文转载自: https://blog.csdn.net/loco_monkey/article/details/125635953
版权归原作者 loco_monkey 所有, 如有侵权,请联系我们删除。

“李宏毅_机器学习_作业4(详解)_HW4 Classify the speakers”的评论:

还没有评论